<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>2008</td>
<td>Initial Issue.</td>
</tr>
<tr>
<td>A</td>
<td>2009</td>
<td>Updated Engine chapter.</td>
</tr>
<tr>
<td>B</td>
<td>2011</td>
<td>Updated Electrical chapter.</td>
</tr>
<tr>
<td>C</td>
<td>2014</td>
<td>Updated Engine chapter.</td>
</tr>
<tr>
<td>D</td>
<td>02/2018</td>
<td>Added revision history.</td>
</tr>
</tbody>
</table>
The Toro Company Technical Assistance Center maintains a continuous effort to improve the quality and usefulness of its publications. To do this effectively, we encourage user feedback. Please comment on the completeness, accuracy, organization, usability, and readability of this manual by an e-mail to servicemanuals@toro.com

or Mail to:

Technical Publication Manager, Commercial
The Toro Company
8111 Lyndale Avenue South
Bloomington, MN 55420-1196
Phone: +1 952-887-8495
Preface

The purpose of this publication is to provide the service technician with information for troubleshooting, testing and repair of major systems and components on the ProForce Debris Blower.

REFER TO THE OPERATOR’S MANUALS FOR OPERATING, MAINTENANCE AND ADJUSTMENT INSTRUCTIONS. Space is provided in Chapter 2 of this book to insert the Operator’s Manuals and Parts Catalogs for your machine. Additional copies of the Operator’s Manual are available on the Internet at www.Toro.com.

The Toro Company reserves the right to change product specifications or this publication without notice.

This safety symbol means DANGER, WARNING, or CAUTION, PERSONAL SAFETY INSTRUCTION. When you see this symbol, carefully read the instructions that follow. Failure to obey the instructions may result in personal injury.

NOTE: A NOTE will give general information about the correct operation, maintenance, service, testing or repair of the machine.

IMPORTANT: The IMPORTANT notice will give important instructions which must be followed to prevent damage to systems or components on the machine.

This page is intentionally blank.
Table Of Contents

Chapter 1 - Safety
- Safety Instructions 1 - 2
- Securing ProForce Debris Blower to Tow Vehicle 1 - 5
- Jacking Instructions .. 1 - 5
- Safety and Instruction Decals 1 - 6

Chapter 2 - Product Records and Maintenance
- Product Records ... 2 - 1
- Maintenance .. 2 - 1
- Equivalents and Conversions 2 - 2
- Torque Specifications ... 2 - 3

Chapter 3 - Engine
- Specifications .. 3 - 2
- General Information .. 3 - 3
- Service and Repairs .. 3 - 5

KOHLER COMMAND ENGINE SERVICE MANUAL

Chapter 4 - Electrical System
- General Information .. 4 - 2
- Electrical Diagrams .. 4 - 2
- Special Tools .. 4 - 3
- Troubleshooting ... 4 - 5
- Electrical System Quick Checks 4 - 8
- Component Testing ... 4 - 9
- Service and Repairs .. 4 - 20

Chapter 5 - Blower Assembly
- General Information .. 5 - 2
- Special Tools .. 5 - 3
- Service and Repairs .. 5 - 4

Chapter 6 - Chassis
- Specifications .. 6 - 2
- General Information .. 6 - 3
- Service and Repairs .. 6 - 4

Chapter 7 - Electrical Diagrams
- Electrical Schematics .. 7 - 3
- Engine Electrical Diagrams 7 - 6
- Circuit Drawings ... 7 - 8
- Wire Harness Drawings 7 - 14
This page is intentionally blank.
Chapter 1

Safety

Table of Contents

SAFETY INSTRUCTIONS 2
Before Operating 2
While Operating 3
Maintenance and Service 4
SECURING PROFORCE DEBRIS BLOWER TO TOW VEHICLE 5
JACKING INSTRUCTIONS 5
SAFETY AND INSTRUCTION DECALS 6
Safety Instructions

The ProForce Debris Blower is designed and tested to offer safe service when operated and maintained properly. Although hazard control and accident prevention partially are dependent upon the design and configuration of the machine, these factors are also dependent upon the awareness, concern and proper training of the personnel involved in the operation, transport, maintenance and storage of the machine. Improper use or maintenance of the machine can result in injury or death. To reduce the potential for injury or death, comply with the following safety instructions.

WARNING

To reduce the potential for injury or death, comply with the following safety instructions.

Before Operating

2. Keep all shields, safety devices and decals in place. If a shield, safety device or decal is defective, illegible or damaged, repair or replace it before operating the machine.

3. Make sure that the tow vehicle is carefully selected to assure the best performance and safe operation of the ProForce Debris Blower.

4. Make sure that operator is familiar with safe tow vehicle operation.

5. Tighten any loose nuts, bolts, screws or other fasteners to ensure machine is in safe operating condition.

6. Make sure that the ProForce Debris Blower is properly attached to tow vehicle.
While Operating

1. Operator should be on the tow vehicle when starting the engine and when operating the ProForce Debris Blower. Stay away from the blower when it is engaged.

2. Before starting the engine on the tow vehicle, refer to tow vehicle Operator’s Manual for safe starting procedures.

3. Do not run engine of ProForce Debris Blower or tow vehicle in a confined area without adequate ventilation. Exhaust fumes are hazardous and could possibly be deadly.

4. Be aware of the blower nozzle direction and do not point it at anyone. Keep away from the nozzle opening during machine operation.

5. Do not touch engine or exhaust system while the Debris Blower engine is running or soon after it is stopped. These areas could be hot enough to cause burns.

6. If abnormal vibration is detected, shut off blower and stop tow vehicle immediately. Determine source of vibration and correct problem(s) before resuming the use of blower.

7. While operating, the combination of the tow vehicle and the ProForce Debris Blower may exceed noise levels of 85dB(A) at the operator position. Hearing protection is recommended for prolonged exposure to reduce the potential of permanent hearing damage.

8. Before leaving the operator’s position of the tow vehicle:
 A. Park on level surface and stop ProForce Debris Blower engine. Make sure that all machine motion has stopped.
 B. Ensure that tow vehicle transmission or traction lever is in neutral, set parking brake, stop engine and remove key from ignition switch.
 C. Wait for all moving parts to stop before leaving the tow vehicle.
 D. If blower use is complete, turn ProForce Debris Blower ignition switch OFF and remove key from switch.
Maintenance and Service

1. Before servicing or making adjustments to ProForce Debris Blower, position ProForce Debris Blower on a level surface and stop blower engine. If blower is attached to tow vehicle, apply tow vehicle parking brake, stop engine and remove key from the ignition switch. Also, turn blower ignition switch OFF and remove key from switch.

2. To prevent unexpected machine operation, disconnect battery before performing any Debris Blower service. Disconnect negative battery cable first and positive cable last. If battery voltage is required for troubleshooting or test procedures, temporarily connect the battery. Reconnect positive battery cable first and negative cable last.

3. Make sure machine is in safe operating condition by keeping all nuts, bolts, screws and other fasteners tight.

4. Use care when checking or servicing the blower: wear gloves and use caution.

5. Before disconnecting ProForce Debris Blower from tow vehicle, park blower on a hard, level surface and chock blower wheels to prevent machine movement.

6. To reduce potential fire hazard, keep engine area free of excessive grease, grass, leaves and dirt.

7. If engine must be running to perform maintenance or to make an adjustment, keep hands, feet, clothing and other parts of the body away from moving parts on the Debris Blower. Keep bystanders away.

8. Do not overspeed the engine by changing governor setting. To assure safety and accuracy, check maximum engine speed with a tachometer.

9. Shut Debris Blower engine off before checking or adding oil to the crankcase.

10. Battery acid is poisonous and can cause burns. Avoid contact with skin, eyes and clothing. Protect your face, eyes and clothing when working with a battery.

11. Battery gases can explode. Keep cigarettes, sparks and flames away from the battery.

12. After servicing the ProForce Debris Blower, be sure that all guards and covers are properly installed.

13. When changing tires or performing other service, use correct supports, hoists and jacks. Make sure machine is parked on a solid level surface such as a concrete floor. Always chock or block wheels. Use suitable jack stands to support the raised machine. If the machine is not properly supported by suitable jack stands, the machine may move or fall, which may result in personal injury (see Jacking Instructions in this chapter).

14. If welding on the machine is necessary, disconnect the negative battery cable and the wire harness connector from the wireless control module to prevent electrical system damage.

15. If major repairs are ever needed or assistance is desired, contact an Authorized Toro Distributor.

16. Engine oil, engine and remote batteries are pollutants to the environment. Dispose of these according to your state and local regulations.

17. At the time of manufacture, the machine conformed to all applicable safety standards. To assure optimum performance and continued safety certification of the machine, use genuine Toro replacement parts and accessories. Replacement parts and accessories made by other manufacturers may result in non-conformance with the safety standards, and the warranty may be voided.
Securing ProForce Debris Blower to Tow Vehicle

While operating or servicing the ProForce Debris Blower, make sure that blower is properly secured to tow vehicle (Fig. 1). Refer to your Operator’s Manual for the correct procedure for attaching blower to tow vehicle.

Jacking Instructions

![Figure 1](image1)

1. Tow vehicle hitch
2. Hitch pin
3. Hairpin clip

CAUTION

When changing tires or performing other service, use suitable hoists and jacks to support the ProForce Debris Blower. Make sure machine is parked on a solid level surface such as a concrete floor. Always chock or block wheels. Use suitable jack stands to support the raised machine. If the machine is not properly supported by jack stands, the machine may move or fall, which may result in personal injury.

1. Position ProForce Debris Blower on a level surface with blower attached to tow vehicle. Engage tow vehicle parking brake, stop engine and remove key from the ignition switch. Make sure that blower engine is off. Chock blower wheels to prevent the machine from moving.

2. Position jack securely under the main frame of the blower (Fig. 2). Do not use the axle as a jacking point.

3. Carefully jack machine off the ground.

4. Position jack stands under the main frame to support the ProForce Debris Blower.

![Figure 2](image2)

1. Wheel
2. Frame jacking point
Safety and Instruction Decals

Numerous safety and instruction decals are affixed to the ProForce Debris Blower. If any decal becomes illegible or damaged, install a new decal. Part numbers for replacement decals are listed in your Parts Catalog. Order replacement decals from your Authorized Toro Distributor.
Table of Contents

PRODUCT RECORDS 1
MAINTENANCE .. 1
EQUIVALENTS AND CONVERSIONS 2
 Decimal and Millimeter Equivalents 2
 U.S. to Metric Conversions 2
TORQUE SPECIFICATIONS 3
 Fastener Identification 3
 Standard Torque for Dry, Zinc Plated and
 Steel Fasteners (Inch Series) 4
 Standard Torque for Dry, Zinc Plated and
 Steel Fasteners (Metric Fasteners) 5
Other Torque Specifications 6
Conversion Factors 6

Product Records

Insert Operator's Manual and Parts Catalog for your
ProForce Debris Blower at the end of this chapter. Addi-
tionally, if any optional equipment or accessories have
been installed to your blower, insert the Installation In-
structions, Operator's Manuals and Parts Catalogs for
those options at the end of this chapter.

Maintenance

Maintenance procedures and recommended service in-
tervals for the ProForce Debris Blower are covered in
the Operator's Manual. Refer to that publication when
performing regular equipment maintenance.
Equivalents and Conversions

Decimal and Millimeter Equivalents

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Decimals</th>
<th>mm</th>
<th>Fractions</th>
<th>Decimals</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64</td>
<td>0.015625</td>
<td>0.397</td>
<td>1/32</td>
<td>0.03125</td>
<td>0.794</td>
</tr>
<tr>
<td>3/64</td>
<td>0.046875</td>
<td>1.191</td>
<td>9/64</td>
<td>0.0625</td>
<td>1.588</td>
</tr>
<tr>
<td>5/64</td>
<td>0.078125</td>
<td>1.984</td>
<td>3/32</td>
<td>0.09375</td>
<td>2.381</td>
</tr>
<tr>
<td>7/64</td>
<td>0.109275</td>
<td>2.778</td>
<td>5/8</td>
<td>0.1250</td>
<td>3.175</td>
</tr>
<tr>
<td>9/64</td>
<td>0.140625</td>
<td>3.572</td>
<td>11/64</td>
<td>0.171875</td>
<td>4.366</td>
</tr>
<tr>
<td>5/32</td>
<td>0.15625</td>
<td>3.969</td>
<td>11/16</td>
<td>0.1875</td>
<td>4.762</td>
</tr>
<tr>
<td>7/32</td>
<td>0.21875</td>
<td>5.556</td>
<td>21/32</td>
<td>0.28125</td>
<td>7.144</td>
</tr>
<tr>
<td>15/64</td>
<td>0.234375</td>
<td>5.953</td>
<td>3/4</td>
<td>0.2500</td>
<td>6.350</td>
</tr>
<tr>
<td>17/64</td>
<td>0.265625</td>
<td>6.747</td>
<td>25/32</td>
<td>0.28125</td>
<td>7.144</td>
</tr>
<tr>
<td>19/64</td>
<td>0.296875</td>
<td>7.541</td>
<td>51/64</td>
<td>0.3125</td>
<td>7.938</td>
</tr>
<tr>
<td>5/16</td>
<td>0.3125</td>
<td>7.938</td>
<td>13/16</td>
<td>0.328125</td>
<td>8.334</td>
</tr>
<tr>
<td>11/32</td>
<td>0.34375</td>
<td>8.731</td>
<td>27/32</td>
<td>0.3625</td>
<td>9.222</td>
</tr>
<tr>
<td>23/64</td>
<td>0.39375</td>
<td>9.128</td>
<td>55/64</td>
<td>0.39375</td>
<td>9.525</td>
</tr>
<tr>
<td>7/8</td>
<td>0.3750</td>
<td>9.250</td>
<td>7/8</td>
<td>0.390625</td>
<td>9.622</td>
</tr>
<tr>
<td>13/32</td>
<td>0.421875</td>
<td>10.176</td>
<td>29/32</td>
<td>0.4375</td>
<td>10.716</td>
</tr>
<tr>
<td>27/64</td>
<td>0.4375</td>
<td>11.112</td>
<td>15/16</td>
<td>0.453125</td>
<td>11.509</td>
</tr>
<tr>
<td>29/64</td>
<td>0.46875</td>
<td>11.906</td>
<td>31/32</td>
<td>0.484375</td>
<td>12.393</td>
</tr>
<tr>
<td>1/2</td>
<td>0.5000</td>
<td>12.700</td>
<td>1</td>
<td>0.5000</td>
<td>12.700</td>
</tr>
</tbody>
</table>

1 mm = 0.03937 in.

0.001 in. = 0.0254 mm

U.S. to Metric Conversions

<table>
<thead>
<tr>
<th>To Convert</th>
<th>Into</th>
<th>Multiply By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles</td>
<td>Kilometers</td>
<td>1.609</td>
</tr>
<tr>
<td>Yards</td>
<td>Kilometers</td>
<td>0.9144</td>
</tr>
<tr>
<td>Feet</td>
<td>Meters</td>
<td>0.3048</td>
</tr>
<tr>
<td>Foot</td>
<td>Centimeters</td>
<td>30.48</td>
</tr>
<tr>
<td>Inches</td>
<td>Meters</td>
<td>0.0254</td>
</tr>
<tr>
<td>Inch</td>
<td>Centimeters</td>
<td>2.54</td>
</tr>
<tr>
<td>Inches</td>
<td>Millimeters</td>
<td>25.4</td>
</tr>
<tr>
<td>Square Miles</td>
<td>Square Kilometers</td>
<td>2.59</td>
</tr>
<tr>
<td>Square Feet</td>
<td>Square Meters</td>
<td>0.929</td>
</tr>
<tr>
<td>Square Inches</td>
<td>Square Centimeters</td>
<td>6.452</td>
</tr>
<tr>
<td>Acre</td>
<td>Hectare</td>
<td>0.4047</td>
</tr>
<tr>
<td>Cubic Yards</td>
<td>Cubic Meters</td>
<td>0.7646</td>
</tr>
<tr>
<td>Cubic Feet</td>
<td>Cubic Meters</td>
<td>0.02832</td>
</tr>
<tr>
<td>Cubic Inch</td>
<td>Cubic Centimeters</td>
<td>16.39</td>
</tr>
<tr>
<td>Tons (Short)</td>
<td>Metric Tons</td>
<td>0.9078</td>
</tr>
<tr>
<td>Pounds</td>
<td>Kilograms</td>
<td>0.4536</td>
</tr>
<tr>
<td>Ounces (Avdp.)</td>
<td>Grams</td>
<td>28.3495</td>
</tr>
<tr>
<td>Pressure Pounds/Sq. In.</td>
<td>Kilopascal</td>
<td>6.895</td>
</tr>
<tr>
<td>Pressure Pounds/Sq. In.</td>
<td>Bar</td>
<td>0.069</td>
</tr>
<tr>
<td>Work Foot-pounds</td>
<td>Newton-Meters</td>
<td>1.356</td>
</tr>
<tr>
<td>Foot-pounds</td>
<td>Kilogram-Meters</td>
<td>0.1382</td>
</tr>
<tr>
<td>Inch-pounds</td>
<td>Kilogram-Centimeters</td>
<td>1.152144</td>
</tr>
<tr>
<td>Liquid Volume Quarts</td>
<td>Liters</td>
<td>0.9463</td>
</tr>
<tr>
<td>Galions</td>
<td>Liters</td>
<td>3.785</td>
</tr>
<tr>
<td>Liquid Flow Galions/Minute</td>
<td>Liters/Minute</td>
<td>3.785</td>
</tr>
<tr>
<td>Temperature Fahrenheit</td>
<td>Celsius</td>
<td>1. Subtract 32°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Multiply by 5/9</td>
</tr>
</tbody>
</table>

Product Records and Maintenance
Page 2 - 2
ProForce Debris Blower
Torque Specifications

Recommended fastener torque values are listed in the following tables. For critical applications, as determined by Toro, either the recommended torque or a torque that is unique to the application is clearly identified and specified in this Service Manual.

These Torque Specifications for the installation and tightening of fasteners shall apply to all fasteners which do not have a specific requirement identified in this Service Manual. The following factors shall be considered when applying torque: cleanliness of the fastener, use of a thread sealant (e.g. Loctite), degree of lubrication on the fastener, presence of a prevailing torque feature, hardness of the surface underneath the fastener’s head or similar condition which affects the installation.

As noted in the following tables, torque values should be reduced by 25% for lubricated fasteners to achieve the similar stress as a dry fastener. Torque values may also have to be reduced when the fastener is threaded into aluminum or brass. The specific torque value should be determined based on the aluminum or brass material strength, fastener size, length of thread engagement, etc.

The standard method of verifying torque shall be performed by marking a line on the fastener (head or nut) and mating part, then back off fastener 1/4 of a turn. Measure the torque required to tighten the fastener until the lines match up.

Fastener Identification

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 5</th>
<th>Grade 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch Series Bolts and Screws</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class 8.8</th>
<th>Class 10.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Bolts and Screws</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

Figure 2
Standard Torque for Dry, Zinc Plated and Steel Fasteners (Inch Series)

<table>
<thead>
<tr>
<th>Thread Size</th>
<th>Grade 1, 5 & 8 with Thin Height Nuts</th>
<th>SAE Grade 1 Bolts, Screws, Studs & Sems with Regular Height Nuts (SAE J995 Grade 2 or Stronger Nuts)</th>
<th>SAE Grade 5 Bolts, Screws, Studs & Sems with Regular Height Nuts (SAE J995 Grade 2 or Stronger Nuts)</th>
<th>SAE Grade 8 Bolts, Screws, Studs & Sems with Regular Height Nuts (SAE J995 Grade 5 or Stronger Nuts)</th>
</tr>
</thead>
<tbody>
<tr>
<td># 6 - 32 UNC</td>
<td>10 ± 2</td>
<td>13 ± 2</td>
<td>147 ± 23</td>
<td>15 ± 2</td>
</tr>
<tr>
<td># 6 - 40 UNF</td>
<td>13 ± 2</td>
<td>25 ± 5</td>
<td>282 ± 30</td>
<td>29 ± 3</td>
</tr>
<tr>
<td># 8 - 32 UNC</td>
<td>31 ± 3</td>
<td>350 ± 30</td>
<td>43 ± 4</td>
<td>485 ± 45</td>
</tr>
<tr>
<td># 8 - 36 UNF</td>
<td>18 ± 2</td>
<td>30 ± 5</td>
<td>39 ± 56</td>
<td>42 ± 4</td>
</tr>
<tr>
<td>1/4 - 20 UNC</td>
<td>48 ± 7</td>
<td>53 ± 7</td>
<td>599 ± 79</td>
<td>100 ± 10</td>
</tr>
<tr>
<td>1/4 - 28 UNF</td>
<td>53 ± 7</td>
<td>65 ± 10</td>
<td>734 ± 113</td>
<td>115 ± 10</td>
</tr>
<tr>
<td>5/16 - 18 UNC</td>
<td>115 ± 15</td>
<td>105 ± 17</td>
<td>1186 ± 169</td>
<td>200 ± 25</td>
</tr>
<tr>
<td>5/16 - 24 UNF</td>
<td>138 ± 17</td>
<td>128 ± 17</td>
<td>1446 ± 192</td>
<td>225 ± 25</td>
</tr>
<tr>
<td>3/8 - 16 UNC</td>
<td>16 ± 2</td>
<td>16 ± 2</td>
<td>22 ± 3</td>
<td>30 ± 3</td>
</tr>
<tr>
<td>3/8 - 24 UNF</td>
<td>17 ± 2</td>
<td>18 ± 2</td>
<td>24 ± 3</td>
<td>35 ± 3</td>
</tr>
<tr>
<td>7/16 - 14 UNC</td>
<td>27 ± 3</td>
<td>27 ± 3</td>
<td>37 ± 4</td>
<td>50 ± 5</td>
</tr>
<tr>
<td>7/16 - 20 UNF</td>
<td>29 ± 3</td>
<td>29 ± 3</td>
<td>39 ± 4</td>
<td>55 ± 5</td>
</tr>
<tr>
<td>1/2 - 13 UNC</td>
<td>30 ± 3</td>
<td>48 ± 7</td>
<td>65 ± 9</td>
<td>75 ± 8</td>
</tr>
<tr>
<td>1/2 - 20 UNF</td>
<td>32 ± 3</td>
<td>53 ± 7</td>
<td>72 ± 9</td>
<td>85 ± 8</td>
</tr>
<tr>
<td>5/8 - 11 UNC</td>
<td>65 ± 10</td>
<td>88 ± 12</td>
<td>119 ± 16</td>
<td>150 ± 15</td>
</tr>
<tr>
<td>5/8 - 18 UNF</td>
<td>75 ± 10</td>
<td>95 ± 15</td>
<td>129 ± 20</td>
<td>170 ± 15</td>
</tr>
<tr>
<td>3/4 - 10 UNC</td>
<td>93 ± 12</td>
<td>140 ± 20</td>
<td>190 ± 27</td>
<td>265 ± 25</td>
</tr>
<tr>
<td>3/4 - 16 UNF</td>
<td>115 ± 15</td>
<td>165 ± 25</td>
<td>224 ± 34</td>
<td>300 ± 25</td>
</tr>
<tr>
<td>7/8 - 9 UNC</td>
<td>140 ± 20</td>
<td>225 ± 25</td>
<td>305 ± 34</td>
<td>430 ± 45</td>
</tr>
<tr>
<td>7/8 - 14 UNF</td>
<td>155 ± 25</td>
<td>260 ± 30</td>
<td>353 ± 41</td>
<td>475 ± 45</td>
</tr>
</tbody>
</table>

NOTE: Reduce torque values listed in the table above by 25% for lubricated fasteners. Lubricated fasteners are defined as threads coated with a lubricant such as oil, graphite or thread sealant such as Loctite.

NOTE: Torque values may have to be reduced when installing fasteners into threaded aluminum or brass. The specific torque value should be determined based on the fastener size, the aluminum or base material strength, length of thread engagement, etc.

NOTE: The nominal torque values listed above for Grade 5 and 8 fasteners are based on 75% of the minimum proof load specified in SAE J429. The tolerance is approximately ± 10% of the nominal torque value. Thin height nuts include jam nuts.
Standard Torque for Dry, Zinc Plated and Steel Fasteners (Metric Fasteners)

<table>
<thead>
<tr>
<th>Thread Size</th>
<th>Class 8.8 Bolts, Screws and Studs with Regular Height Nuts (Class 8 or Stronger Nuts)</th>
<th>Class 10.9 Bolts, Screws and Studs with Regular Height Nuts (Class 10 or Stronger Nuts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5 X 0.8</td>
<td>57 ± 5 in-lb 640 ± 60 N-cm</td>
<td>78 ± 7 in-lb 885 ± 80 N-cm</td>
</tr>
<tr>
<td>M6 X 1.0</td>
<td>96 ± 9 in-lb 1018 ± 100 N-cm</td>
<td>133 ± 13 in-lb 1500 ± 150 N-cm</td>
</tr>
<tr>
<td>M8 X 1.25</td>
<td>19 ± 2 ft-lb 26 ± 3 N-m</td>
<td>27 ± 2 ft-lb 36 ± 3 N-m</td>
</tr>
<tr>
<td>M10 X 1.5</td>
<td>38 ± 4 ft-lb 52 ± 5 N-m</td>
<td>53 ± 5 ft-lb 72 ± 7 N-m</td>
</tr>
<tr>
<td>M12 X 1.75</td>
<td>66 ± 7 ft-lb 90 ± 10 N-m</td>
<td>92 ± 9 ft-lb 125 ± 12 N-m</td>
</tr>
<tr>
<td>M16 X 2.0</td>
<td>166 ± 15 ft-lb 225 ± 20 N-m</td>
<td>229 ± 22 ft-lb 310 ± 30 N-m</td>
</tr>
<tr>
<td>M20 X 2.5</td>
<td>325 ± 33 ft-lb 440 ± 45 N-m</td>
<td>450 ± 37 ft-lb 610 ± 50 N-m</td>
</tr>
</tbody>
</table>

NOTE: Reduce torque values listed in the table above by 25% for lubricated fasteners. Lubricated fasteners are defined as threads coated with a lubricant such as oil, graphite or thread sealant such as Loctite.

NOTE: Torque values may have to be reduced when installing fasteners into threaded aluminum or brass. The specific torque value should be determined based on the fastener size, the aluminum or base material strength, length of thread engagement, etc.

NOTE: The nominal torque values listed above are based on 75% of the minimum proof load specified in SAE J1199. The tolerance is approximately ± 10% of the nominal torque value.
Other Torque Specifications

SAE Grade 8 Steel Set Screws

<table>
<thead>
<tr>
<th>Thread Size</th>
<th>Square Head</th>
<th>Hex Socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 - 20 UNC</td>
<td>140 ± 20 in-lb</td>
<td>73 ± 12 in-lb</td>
</tr>
<tr>
<td>5/16 - 18 UNC</td>
<td>215 ± 35 in-lb</td>
<td>145 ± 20 in-lb</td>
</tr>
<tr>
<td>3/8 - 16 UNC</td>
<td>35 ± 10 ft-lb</td>
<td>18 ± 3 ft-lb</td>
</tr>
<tr>
<td>1/2 - 13 UNC</td>
<td>75 ± 15 ft-lb</td>
<td>50 ± 10 ft-lb</td>
</tr>
</tbody>
</table>

Thread Cutting Screws (Zinc Plated Steel)

Type 1, Type 23 or Type F

<table>
<thead>
<tr>
<th>Thread Size</th>
<th>Baseline Torque*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 6 - 32 UNC</td>
<td>20 ± 5 in-lb</td>
</tr>
<tr>
<td>No. 8 - 32 UNC</td>
<td>30 ± 5 in-lb</td>
</tr>
<tr>
<td>No. 10 - 24 UNC</td>
<td>38 ± 7 in-lb</td>
</tr>
<tr>
<td>1/4 - 20 UNC</td>
<td>85 ± 15 in-lb</td>
</tr>
<tr>
<td>5/16 - 18 UNC</td>
<td>110 ± 20 in-lb</td>
</tr>
<tr>
<td>3/8 - 16 UNC</td>
<td>200 ± 100 in-lb</td>
</tr>
</tbody>
</table>

Wheel Bolts and Lug Nuts

<table>
<thead>
<tr>
<th>Thread Size</th>
<th>Recommended Torque**</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/16 - 20 UNF Grade 5</td>
<td>65 ± 10 ft-lb 88 ± 14 N-m</td>
</tr>
<tr>
<td>1/2 - 20 UNF Grade 5</td>
<td>80 ± 10 ft-lb 108 ± 14 N-m</td>
</tr>
<tr>
<td>M12 X 1.25 Class 8.8</td>
<td>80 ± 10 ft-lb 108 ± 14 N-m</td>
</tr>
<tr>
<td>M12 X 1.5 Class 8.8</td>
<td>80 ± 10 ft-lb 108 ± 14 N-m</td>
</tr>
</tbody>
</table>

** For steel wheels and non-lubricated fasteners.

Conversion Factors

\[\text{in-lb} \times 11.2985 = \text{N-cm}\]

\[\text{ft-lb} \times 1.3558 = \text{N-m}\]

\[\text{N-cm} \times 0.08851 = \text{in-lb}\]

\[\text{N-m} \times 0.7376 = \text{ft-lb}\]
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>3</td>
</tr>
<tr>
<td>Operator’s Manual</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Power</td>
<td>3</td>
</tr>
<tr>
<td>SERVICE AND REPAIRS</td>
<td>5</td>
</tr>
<tr>
<td>Engine Cooling System</td>
<td>5</td>
</tr>
<tr>
<td>Fuel Tank</td>
<td>6</td>
</tr>
<tr>
<td>Engine</td>
<td>8</td>
</tr>
<tr>
<td>Engine Removal</td>
<td>9</td>
</tr>
<tr>
<td>Engine Installation</td>
<td>10</td>
</tr>
<tr>
<td>Fuel Evaporative Control System (Serial Number Above 310000000)</td>
<td>12</td>
</tr>
</tbody>
</table>

KOHLER COMMAND ENGINE SERVICE MANUAL
Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make / Designation</td>
<td>Kohler, 4-cycle, V-Twin cylinder, OHV, air cooled, Model CH740S</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>3.27 in x 2.64 in (83 mm x 67 mm)</td>
</tr>
<tr>
<td>Total Displacement</td>
<td>44 in³ (725 cc)</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>9.0:1</td>
</tr>
<tr>
<td>Governor</td>
<td>Electronic</td>
</tr>
<tr>
<td>Low Idle Speed (no load)</td>
<td>1800 ± 100 RPM</td>
</tr>
<tr>
<td>High Idle Speed (no load)</td>
<td>3450 ± 100 RPM</td>
</tr>
<tr>
<td>Carburetor</td>
<td>Float feed, fixed main jet, solenoid fuel shut-off</td>
</tr>
<tr>
<td>Fuel</td>
<td>Unleaded, regular grade gasoline</td>
</tr>
<tr>
<td>Fuel Pump</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Fuel Tank Capacity</td>
<td>5 U.S. gal (18.9 l)</td>
</tr>
<tr>
<td>Air Cleaner</td>
<td>Dual element</td>
</tr>
<tr>
<td>Lubrication System</td>
<td>Pressure lubrication with oil cooler</td>
</tr>
<tr>
<td>Crankcase Oil Capacity</td>
<td>2.0 U.S. qt (1.9 l)</td>
</tr>
<tr>
<td>Engine Oil</td>
<td>See Operator’s Manual</td>
</tr>
<tr>
<td>Ignition System</td>
<td>Flywheel magneto, twin electronic armatures with ignition advance</td>
</tr>
<tr>
<td>Spark Plug</td>
<td>Champion RC12YC (resister style)</td>
</tr>
<tr>
<td>Spark Plug Gap</td>
<td>0.030 in (0.76 mm)</td>
</tr>
<tr>
<td>Starter</td>
<td>12 VDC, solenoid shift</td>
</tr>
<tr>
<td>Alternator</td>
<td>12 VDC / 15 Amps</td>
</tr>
<tr>
<td>Dry Weight</td>
<td>94 lbs (43 kg)</td>
</tr>
</tbody>
</table>
General Information

This Chapter gives information about specifications, maintenance, troubleshooting, testing and repair of the gasoline engine used in the ProForce Debris Blower.

Most repairs and adjustments require tools which are commonly available in many service shops. Special tools are described in the KOHLER COMMAND ENGINE SERVICE MANUAL that is included at the end of this Chapter. The use of some specialized test equipment is explained. However, the cost of the test equipment and the specialized nature of some repairs may dictate that the work be done at an engine repair facility.

Service and repair parts for Kohler engines are supplied through your local Toro distributor. Be prepared to provide your distributor with the Toro model and serial number.

Operator’s Manual

The Operator’s Manual provides information regarding the operation, general maintenance and maintenance intervals for your ProForce Debris Blower machine. Refer to the Operator’s Manual for additional information when servicing the machine.

Electrical Power

Electrical power to ProForce Debris Blower components is controlled by the Remote Control Module. To make sure that machine operation does not occur unexpectedly, disconnect the negative battery cable from the battery before performing any machine service (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System).

Reattach the disconnected negative battery cable as the last step in any repair. Secure cable with flange nut. Torque nut from 10 to 15 ft-lb (14 to 20 N·m).
This page is intentionally blank.
Service and Repairs

Engine Cooling System

To ensure proper engine cooling, make sure the grass screen, cooling fins and other external surfaces of the engine are kept clean at all times.

IMPORTANT: The engine that powers the ProForce Debris Blower is air-cooled. Operating the engine with dirty or plugged cooling fins or a plugged or dirty blower housing will result in engine overheating and damage.

1. Park machine on a level surface. Make sure engine is OFF. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

CAUTION

The engine may be hot. Allow engine to cool before cleaning the engine cooling fins.

IMPORTANT: Never clean engine with pressurized water. Water could enter and contaminate the fuel system.

3. Clean cooling fins on both cylinder heads.

4. Clean grass screen and blower housing of dirt and debris (Fig. 1).

5. If necessary remove blower housing from engine for more thorough engine cleaning.

IMPORTANT: Never operate engine without the blower housing installed. Overheating and engine damage will result.

6. Make sure blower housing and/or engine cylinder shrouds are installed to the engine if removed.

7. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N·m). Make sure that battery cover is secured.
SERIAL NUMBER BELOW 310000000 SHOWN

1. Frame
2. Foam strip (2 used)
3. Fuel tank
4. Felt strip (2 used)
5. Flange nut (4 used)
6. Tank strap (2 used)
7. Fuel cap and gauge
8. Worm clamp
9. Fuel hose

DANGER
Because gasoline is highly flammable, use caution when storing or handling it. Do not smoke while filling the fuel tank. Do not fill fuel tank while engine is running, hot, or when machine is in an enclosed area. Always fill fuel tank outside and wipe up any spilled fuel before starting the engine. Store fuel in a clean, safety-approved container and keep cap in place. Use gasoline for the engine only; not for any other purpose.

Check Fuel Lines and Connections
Check fuel lines and connections periodically as recommended in the Operator’s Manual. Check fuel lines for deterioration, damage or leaking connections. Replace hoses, clamps and connections as necessary.

Drain and Clean Fuel Tank
Drain and clean the fuel tank periodically as recommended in the Operator’s Manual. Also, drain and clean the fuel tank if the fuel system becomes contaminated or if the machine is to be stored for an extended period.

To clean fuel tank, flush tank out with clean solvent. Make sure tank is free of all contaminates and debris.
Fuel Tank Removal (Figs. 2 and 4)

1. Park machine on a level surface with the engine OFF. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Remove fuel from the fuel tank and into a suitable container.

4. Note routing of fuel hoses for installation purposes. Disconnect fuel hoses from fuel tank fittings. Plug fuel hoses to prevent leakage or contaminant entry.

5. Remove fuel tank from machine using Figure 2 or 4 as a guide. Make sure to clean up any spilled fuel.

6. On machine with serial number above 310000000, remove components from fuel tank as needed using Figure 5 as a guide.

Fuel Tank Installation (Figs. 2 and 4)

1. On machine with serial number above 310000000, install all removed components to fuel tank using Figure 5 as a guide.

2. Install fuel tank to machine using Figure 2 or 4 as a guide.

3. Remove plugs placed in fuel hoses during fuel tank removal. Connect fuel hoses to tank fittings and secure with hose clamps.

4. Add fuel to tank and check for any fuel leaks.

5. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.
Figure 6

1. Frame
2. Engine
3. Fuel tank
4. Flange nut (4 used)
5. Flange head screw (4 used)
6. Blower coupler assembly

270 to 330 in-lb (31 to 37 N-m)
Engine Removal (Fig. 6)

1. Park machine on a level surface with the engine not running and the ignition key removed from the key switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. If engine is to be disassembled, it may be easier to drain oil from engine before removing engine from machine.

4. Label and disconnect wire harness connectors from engine.
 A. Disconnect positive battery cable and fusible link from the starter motor B+ stud.
 B. Disconnect wire harness blue wire from starter motor terminal.
 C. Loosen and remove flange bolts that secure negative battery cable and wire harness ground connector to engine. Note that there is a lock washer on the bolt that secures the negative battery cable.
 D. Disconnect wire harness connectors from remaining engine wires.

5. Loosen hose clamp that secures fuel hose to fuel filter inlet (Fig. 7). Remove fuel hose from fuel filter. Plug fuel hose to prevent leakage and contamination. Make sure to clean up any spilled fuel. Position disconnected fuel hose away from engine.

6. Remove top grill and side grill from machine (see Guards Removal in the Service and Repairs section of Chapter 6 - Chassis).

7. Disconnect blower drive shaft from engine crankshaft (see Drive Shaft Removal in the Service and Repairs section of Chapter 5 - Blower Assembly).

8. Remove four (4) flange head screws and flange nuts that secure engine to machine.

9. Carefully remove the engine from machine.

10. Remove engine parts and attachments as necessary to repair the engine.

IMPORTANT: Make sure to not damage the engine, fuel hoses, electrical harness or other parts while removing the engine.

CAUTION

The exhaust system may be hot. Avoid possible burns: allow exhaust to cool before removing the engine.

To prevent personal injury, make sure that engine is properly supported as it is removed from the machine. Engine weighs approximately 94 pounds (43 kg).
Engine Installation (Fig. 6)

1. Position machine on a level surface.

2. Make sure that all parts removed from the engine during maintenance or rebuilding are properly installed to the engine.

IMPORTANT: Take care to not damage the engine, fuel hoses, electrical harness or other parts while installing the engine.

3. Carefully position engine on machine frame.

4. Install four (4) flange head screws up through the frame and engine mounting holes. Install flange nuts on screws. Do not fully tighten nuts at this time.

5. Connect blower drive shaft to engine crankshaft (see Drive Shaft Installation in the Service and Repairs section of Chapter 5 – Blower Assembly).

6. Move engine on frame as necessary to align the blower drive shaft assembly between the blower and engine shafts.

7. Fully tighten the engine mounting fasteners. Torque fasteners from 270 to 330 in-lb (31 to 37 N·m).

8. Install top grill and side grill (see Guards Installation in the Service and Repairs section of Chapter 6 – Chassis).

9. Connect wire harness connectors to engine.
 A. Connect positive battery cable and fusible link to the starter motor B+ stud.
 B. Connect wire harness blue wire to starter motor terminal.
 C. Secure negative battery cable and wire harness ground connector to engine with flange bolts. Note that there is a lock washer on the bolt that secures the negative battery cable.
 D. Connect wire harness connectors to remaining engine wires.

10. Remove plug installed in fuel hose during engine removal process. Connect fuel hose to the fuel filter inlet and secure with hose clamp (Fig. 7).

11. Check and adjust engine oil level as needed.

12. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N·m). Make sure that battery cover is secured.
This page is intentionally blank.
ProForce blowers with serial number above 310000000 are equipped with a fuel evaporative control system (EVAP) designed to collect and store evaporative emissions from the fuel tank. The EVAP uses a carbon canister to collect these evaporative emissions. Fuel vapors from the fuel tank are vented to the canister where they are stored. Vapors from the canister are consumed when the engine is running which purges the canister.

The fuel tank on these ProForce machines uses a non-vented fuel cap. To connect the tank to the evaporative control system, a fuel vent valve is positioned in the top of the tank that allows tank venting through the carbon canister.

NOTE: If there is restriction in the fresh air filter, the carbon canister or the fuel vent valve, the fuel tank may distort due to venting issues. If the fuel tank returns to its normal shape when the fuel cap is removed, restriction in the evaporative control system is likely.

Machines with a carbon canister include a single engine connection to the engine intake system that is used to connect the evaporative system to the engine. These machines use an inline check valve and fuel filter between the carbon canister and the engine fitting. Evaporative control system components for ProForce blowers are shown in Figure 11.
Disassembly

DANGER

Gasoline is flammable. Use caution when storing or handling it. Wipe up any spilled fuel before starting the engine.

1. Inspect carbon canister and attached hoses for damage or obvious leaks. A damaged or leaking canister should be replaced.

2. Remove components as needed using Figures 12 and 13 as guides.
 - A. If check valve (item 7 in Fig. 13) is removed, note direction of arrow on valve body for assembly purposes.
 - B. If filter (item 5 in Fig. 13) is removed, note direction of arrow on filter body for assembly purposes.

Assembly

1. Install all removed components using Figures 12 and 13 as guides.
 - A. If check valve (item 7 in Fig. 13) was removed, make sure that arrow on valve body points toward engine.
 - B. If filter (item 5 in Fig. 13) was removed, make sure that arrow on filter body points toward engine.
 - C. Make sure that evaporative system fuel hoses are not kinked after installation. Also, secure all hoses with hose clamps.
This page is intentionally blank.
Table of Contents

- **GENERAL INFORMATION** .. 2
 - Operator’s Manual .. 2
 - Electrical Power .. 2
- **ELECTRICAL DIAGRAMS** 2
- **SPECIAL TOOLS** .. 3
- **TROUBLESHOOTING** ... 5
 - Starting Problems .. 5
 - General Run Problems .. 7
- **ELECTRICAL SYSTEM QUICK CHECKS** 8
 - Battery Test (Open Circuit Test) 8
 - Charging System Test .. 8
- **COMPONENT TESTING** ... 9
 - Ignition Switch .. 9
 - Hour Meter ... 10
 - Fuse .. 11
 - Fusible Link (Serial Number Below 310000000) 12
 - Relays .. 13
 - Remote Transmitter (Machines with Single Channel Controller) ... 14
 - Remote Transmitter (Machines with Multi Channel Controller) ... 15
 - Wireless Control Module (Machines with Single Channel Controller) 16
 - Wireless Control Module (Machines with Multi Channel Controller) 17
 - Diode Assembly (Serial Number Below 310000000) .. 18
- **SERVICE AND REPAIRS** 20
 - Nozzle Motor .. 20
 - Battery Storage .. 22
 - Battery Care .. 22
 - Battery Service .. 23
General Information

This Chapter gives information about troubleshooting, testing and repair of the electrical system used in the ProForce Debris Blower.

Operator’s Manual

The Operator’s Manual provides information regarding the operation, general maintenance and maintenance intervals for your ProForce Debris Blower machine. Refer to the Operator’s Manual for additional information when servicing the machine.

Electrical Power

Electrical power to ProForce Debris Blower components is controlled by the Remote Control Module. To make sure that machine operation does not occur unexpectedly, disconnect the negative battery cable from the battery before performing any machine service.

Reattach the disconnected negative battery cable as the last step in any repair. Secure cable with flange nut. Torque nut from 10 to 15 ft-lb (14 to 20 N-m).

Electrical Diagrams

The electrical schematic and wire harness drawings for the ProForce Debris Blower are located in Chapter 7 - Electrical Diagrams.
Special Tools

Order special tools from your Toro Distributor. Some tools may also be available from a local supplier.

Multimeter

The multimeter can test electrical components and circuits for current (amps), resistance (ohms) or voltage. Obtain this tool locally.

NOTE: Toro recommends the use of a DIGITAL Volt-Ohm-Amp multimeter when testing electrical circuits. The high impedance (internal resistance) of a digital meter in the voltage mode will make sure that excess current is not allowed through the meter. This excess current can cause damage to circuits not designed to carry it.

![Figure 1](image1.png)

Skin-Over Grease

Special non-conductive grease which forms a light protective skin to help waterproof electrical switches and contacts.

Toro Part Number: TOR50547

![Figure 2](image2.png)

Battery Terminal Protector

Aerosol spray that should be used on battery terminals to reduce corrosion problems. Apply battery terminal protector after the battery cable has been secured to the battery terminal.

Toro Part Number: 107-0392

![Figure 3](image3.png)
Battery Hydrometer

Use the battery hydrometer when measuring specific gravity of battery electrolyte. Obtain this tool locally.

Figure 4
Troubleshooting

CAUTION

Remove all jewelry, especially rings and watches, before doing any electrical troubleshooting or testing. Disconnect the battery cables unless the test requires battery voltage.

Starting Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter solenoid clicks, but starter will not crank.</td>
<td>Battery is discharged.</td>
</tr>
<tr>
<td></td>
<td>Battery cables are loose or corroded.</td>
</tr>
<tr>
<td></td>
<td>Wire harness ground cable is loose or corroded.</td>
</tr>
<tr>
<td></td>
<td>Wiring at starter is faulty.</td>
</tr>
<tr>
<td></td>
<td>Starter solenoid is faulty.</td>
</tr>
<tr>
<td></td>
<td>Starter is faulty.</td>
</tr>
<tr>
<td>Nothing happens when start attempt is made.</td>
<td>Battery is discharged.</td>
</tr>
<tr>
<td></td>
<td>Wiring to the start circuit components is loose, corroded or damaged (see Electrical Schematic in Chapter 7 – Electrical Diagrams).</td>
</tr>
<tr>
<td></td>
<td>Battery cables are loose or corroded.</td>
</tr>
<tr>
<td></td>
<td>Wire harness ground cable is loose or corroded.</td>
</tr>
<tr>
<td></td>
<td>Main fuse (15 amp) is loose or faulty.</td>
</tr>
<tr>
<td></td>
<td>Fusible link is faulty.</td>
</tr>
<tr>
<td></td>
<td>Ignition switch is faulty.</td>
</tr>
<tr>
<td></td>
<td>Operator remote control or remote control module is faulty.</td>
</tr>
</tbody>
</table>
Starting Problems (Continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine cranks, but does not start.</td>
<td>Ignition switch is faulty.</td>
</tr>
<tr>
<td></td>
<td>Magneto relay or circuit wiring is faulty.</td>
</tr>
<tr>
<td></td>
<td>Fuel relay or circuit wiring is faulty.</td>
</tr>
<tr>
<td></td>
<td>Diode is faulty.</td>
</tr>
<tr>
<td></td>
<td>Operator remote control or remote control module is faulty.</td>
</tr>
<tr>
<td></td>
<td>Engine or fuel system is malfunctioning (see Chapter 3 - Engine).</td>
</tr>
<tr>
<td></td>
<td>Engine and fuel may be too cold.</td>
</tr>
</tbody>
</table>
General Run Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery does not charge.</td>
<td>Wiring to charging circuit components is loose, corroded or damaged (see Electrical Schematic in Chapter 7 - Electrical Diagrams). Voltage regulator is not properly grounded to engine. Voltage regulator is faulty. Ignition switch is faulty. Battery is faulty. Alternator stator or engine flywheel is faulty.</td>
</tr>
<tr>
<td>Engine stops during operation.</td>
<td>Operator remote control button was inadvertently pressed. Ignition switch is faulty. Fuse or fusible link is faulty. Fuel, magneto and/or power relay is/are faulty. Wiring to the run circuit components is broken or disconnected (see Electrical Schematic in Chapter 7 - Electrical Diagrams). Operator remote control or remote control module is faulty. Engine or fuel system is malfunctioning (see Chapter 3 - Engine).</td>
</tr>
<tr>
<td>Nozzle rotation motor does not operate.</td>
<td>Wiring to the nozzle rotation motor is broken or disconnected (see Electrical Schematic in Chapter 7 - Electrical Diagrams). Nozzle rotation motor is faulty. Operator remote control or remote control module is faulty.</td>
</tr>
</tbody>
</table>
Battery Test (Open Circuit Test)

Use a digital multimeter to measure the battery voltage.

Set the multimeter to the DC volts setting. The battery should be at a temperature of 60° to 100° F (16° to 38° C). The ignition switch should be in the OFF position and all accessories turned off. Connect the positive (+) multimeter lead to the positive battery post and the negative (−) multimeter lead to the negative battery post. Record the battery voltage.

NOTE: This test provides a relative condition of the battery. Load testing of the battery will provide additional and more accurate information (see Battery Service in the Service and Repairs section).

<table>
<thead>
<tr>
<th>Voltage Measured</th>
<th>Battery Charge Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.68 volts</td>
<td>Fully charged (100%)</td>
</tr>
<tr>
<td>12.45 volts</td>
<td>75% charged</td>
</tr>
<tr>
<td>12.24 volts</td>
<td>50% charged</td>
</tr>
<tr>
<td>12.06 volts</td>
<td>25% charged</td>
</tr>
<tr>
<td>11.89 volts</td>
<td>0% charged</td>
</tr>
</tbody>
</table>

Charging System Test

This is a simple test used to determine if a charging system is functioning. It will tell you if the charging system has an output, but not its capacity.

Use a digital multimeter set to DC volts. Connect the positive (+) multimeter lead to the positive battery post and the negative (−) multimeter lead to the negative battery post. Keep the test leads connected to the battery posts and record the battery voltage.

NOTE: Upon starting the engine, the battery voltage will drop and then should increase once the engine is running.

NOTE: Depending upon the condition of the battery charge and battery temperature, the battery voltage will increase at different rates as the battery charges.

Start the engine and run at high idle (3450 RPM). Allow the battery to charge for at least 3 minutes. Record the battery voltage.

After running the engine for at least 3 minutes, battery voltage should be at least 0.50 volt higher than initial battery voltage.

An example of a charging system that is functioning:

<table>
<thead>
<tr>
<th>At least 0.50 volt over initial battery voltage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Battery Voltage</td>
</tr>
<tr>
<td>Battery Voltage after 3 Minute Charge</td>
</tr>
<tr>
<td>Difference</td>
</tr>
</tbody>
</table>
Component Testing

For accurate resistance and/or continuity checks, electrically disconnect the component being tested from the circuit (e.g. unplug the switch connector before doing a continuity check on switch).

CAUTION

When testing electrical components for continuity with a multimeter (ohms setting), make sure that power to the circuit has been disconnected.

Ignition Switch

The ignition (key) switch used on the ProForce Debris Blower has three positions (OFF, RUN and START).

On ProForce blowers with serial numbers below 310000000, the ignition switch is mounted to the engine blower housing. This switch is shown in Figure 5 and switch circuits are shown in Figure 6.

ProForce blowers with serial numbers above 310000000 have the ignition switch mounted to the frame panel above the battery. This switch is shown in Figure 7 and switch circuits are shown in Figure 8.

Testing

1. Make sure that ignition switch is OFF.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of this chapter). Position disconnected negative cable away from the negative battery terminal.

3. On blowers with serial numbers below 310000000, remove engine blower housing to gain access to ignition switch (see the Kohler Engine Service Manual at the end of Chapter 3 – Engine).

4. Unplug wire harness connectors from switch.

5. With the use of a multimeter (ohms setting), test ignition switch by verifying continuity between switch terminals for each switch position.

6. Connect the harness connectors to the switch after testing.

7. On blowers with serial numbers below 310000000, install blower housing onto engine (see the Kohler Engine Service Manual at the end of Chapter 3 – Engine).

8. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N·m). Make sure that battery cover is secured.
Hour Meter

The hour meter used on the ProForce Debris Blower records the amount of time that the engine is running.

Testing

1. Make sure that ignition switch is OFF.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of this chapter). Position disconnected negative cable away from the negative battery terminal.

3. Locate wire harness connector at rear of hour meter. Unplug harness connector from hour meter.

4. Connect the positive (+) terminal of a 12 VDC source to the positive (+) terminal of the hour meter.

5. Connect the negative (-) terminal of the voltage source to the other terminal of the hour meter.

6. The hour meter should move 1/10 of an hour in six minutes.

7. Disconnect the voltage source from the hour meter.

8. Replace the hour meter if necessary.

9. Connect wire harness connector to hour meter.

10. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.
Fuse

The ProForce Debris Blower uses a 15 amp fuse for circuit protection. The fuse holder for this fuse is located next to the engine (Fig. 8).

The engine wire harness includes a 30 amp fuse for circuit protection. The engine fuse is located near the starter motor (Fig. 9).

Testing

1. Make sure that ignition switch is OFF.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of this chapter). Position disconnected negative cable away from the negative battery terminal.

3. Press latch that retains fuse holder cover and raise cover to access fuse.

4. With the use of a multimeter (ohms setting), check for continuity between fuse terminals by using test ports at top of fuse. Fuse should have continuity between fuse terminals.

5. If necessary, remove and replace fuse.

6. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.
Fusible Link (Serial Number Below 310000000)

ProForce Debris Blowers with a serial number below 310000000 use a fusible link for circuit protection. This fusible link connects the main wire harness to the starter B+ terminal and positive battery cable (Fig. 12). If the link should fail, current to the machine will cease. Refer to electrical schematic and wire harness drawings in Chapter 7 – Electrical Diagrams for additional fusible link information.

Testing

1. Make sure that ignition switch is OFF.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of this chapter). Position disconnected negative cable away from the negative battery terminal.

3. Locate and unplug fusible link connector from machine wire harness.

4. Use a multimeter to make sure that continuity exists between the disconnected fusible link connector and the link terminal at the starter motor (Fig. 13). If the fusible link is open (no continuity), replace the fusible link harness.

5. After testing is complete, make sure that fusible link connectors are securely attached to starter and machine wire harness.

6. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.
Relays

The electrical system on all ProForce Debris Blowers includes a fuel relay that is used to energize the engine carburetor fuel solenoid. When the ignition switch is in the RUN or START position, the fuel relay is energized by the Wireless Control Module.

ProForce blowers with serial numbers below 310000000 include a second relay. The power relay on these machines is used to provide machine electrical power when it is energized by the Remote Control Module.

ProForce blower models 44538 and 44539 with serial numbers above 312000000 include an additional three (3) relays: a start relay and two (2) relays for energizing the chute rotation motor. These relays are energized by the Wireless Control Module when a remote transmitter input is entered for engine starting or chute rotation.

The relays are secured to the control tower bracket next to the engine. The relays can be identified by the wire colors at the wire harness connector (see Wire Harness Drawings in Chapter 7 - Electrical Diagrams).

Testing

1. Make sure that ignition switch is OFF.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of this chapter). Position disconnected negative cable away from the negative battery terminal.

3. Locate relay and disconnect the machine wire harness connector from the relay. Remove relay from machine for easier testing.

NOTE: Prior to taking small resistance readings with a digital multimeter, short the meter test leads together. The meter will display a small resistance value (usually 0.5 ohms or less). This resistance is due to the internal resistance of the meter and test leads. Subtract this value from the measured value of the component you are testing.

4. Using a multimeter (ohms setting), measure coil resistance between terminals 85 and 86 (Fig. 14). Resistance should be between 70 and 90 ohms.

5. Connect multimeter (ohms setting) leads to relay terminals 30 and 87. Ground terminal 86 and apply +12 VDC to terminal 85. The relay should have continuity between terminals 30 and 87 as +12 VDC is applied to terminal 85. The relay should not have continuity between terminals 30 and 87 as +12 VDC is removed from terminal 85.

6. Disconnect voltage and multimeter leads from the relay terminals.

7. Connect multimeter (ohms setting) leads to relay terminals 30 and 87A. Ground terminal 86 and apply +12 VDC to terminal 85. The relay should not have continuity between terminals 30 and 87A as +12 VDC is applied to terminal 85. The relay should have continuity between terminals 30 and 87A as +12 VDC is removed from terminal 85.

8. Disconnect voltage and multimeter leads from the relay terminals.

9. Secure relay to machine and connect machine wire harness connector to relay.

10. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.

Figure 14
Remote Transmitter (Machines with Single Channel Controller)

NOTE: Machines with a single channel controller can be identified by the external antenna on the control module (Fig. 15).

The remote transmitter is a solid state electrical device that sends radio frequency (RF) signal inputs to the machine control module for control of machine electrical operation (Fig. 15). The remote transmitter has sufficient range to send an RF signal to the control module from the tow vehicle operator position.

When a button on the remote transmitter is pressed, the LED on the remote should flicker (Fig. 16). If the machine control module is energized (control module Time Out and Power LED’s are both illuminated) and a remote transmitter button is pressed, the corresponding control module LED should illuminate and the control module RF activity LED should flicker.

If the control module is energized (control module Time Out and Power LED’s are both illuminated), remote button functions are as follows:

Pressing the Engine Start button initiates a starting sequence to start the engine. This sequence (see Operator’s Manual) is necessary to prevent accidental engine starting. After pressing the Engine Start button, the RH Nozzle and LH Nozzle Rotate buttons are inactive for five (5) seconds.

Pressing the Speed Increase (rabbit) button when the engine is running causes the engine speed to increase.

Pressing the Speed Decrease (turtle) button when the engine is running causes the engine speed to decrease.

Pressing the RH Nozzle Rotate button causes the blower nozzle to rotate to the right.

Pressing the LH Nozzle Rotate button causes the blower nozzle to rotate to the left.

Pressing the engine Stop button causes the engine to stop running.

NOTE: When the engine stop button on the remote transmitter is pressed, there will be a one (1) second delay before the engine stop LED on the control module illuminates. Also, for approximately five (5) seconds after the stop button is pressed, the control module engine stop LED will remain illuminated and no other remote transmitter operations can be performed.

The remote transmitter is powered by three (3) AAA alkaline batteries. If the range of the transmitter has diminished or the transmitter LED does not flicker when a button is pressed, the batteries should be replaced.

Remote Transmitter Battery Replacement

1. Remove six (6) screws that secure the rear cover to the remote transmitter.
2. Lift rear cover from remote transmitter.
3. Remove batteries from remote transmitter and replace with three (3) new AAA alkaline batteries.
4. Place rear cover on remote transmitter and secure with six (6) screws.

![Figure 15](image1)

1. Remote transmitter
2. Control module
3. External antenna

![Figure 16](image2)

1. Speed increase
2. Speed decrease
3. RH nozzle rotate
4. LH nozzle rotate
5. Engine stop
6. Engine start
7. Remote control LED
Remote Transmitter (Machines with Multi Channel Controller)

NOTE: Machines with a multi channel controller can be identified by the lack of an external antenna on the control module (Fig. 17).

NOTE: Additional information regarding the remote transmitter is included in the Operator’s Manual.

The remote transmitter is a solid state electrical device that sends radio frequency (RF) signal inputs to the machine control module for control of machine electrical operation (Fig. 17). The remote transmitter has sufficient range to send an RF signal to the control module from the tow vehicle operator position.

When a button on the remote transmitter is pressed, the TX LED on the remote should illuminate and then blink (Fig. 18). If the machine control module is energized (control module health LED is illuminated) and a remote transmitter button is pressed, the control module TX/RX LED should blink.

If the control module is energized (control module health LED is illuminated), remote transmitter button functions are as follows:

Pressing the Engine Start button initiates a starting sequence to start the engine. This sequence (see Operator’s Manual) is necessary to prevent accidental engine starting. If any transmitter buttons are pressed out of order during the starting sequence, the sequence will be aborted.

Pressing the LH Nozzle Rotate button causes the blower nozzle to rotate to the left.

Pressing the RH Nozzle Rotate button causes the blower nozzle to rotate to the right.

Pressing the Speed Decrease (turtle) button when the engine is running causes the engine speed to decrease.

Pressing the Speed Increase (rabbit) button when the engine is running causes the engine speed to increase.

NOTE: Pressing the speed increase and speed decrease buttons simultaneously will return the engine to low idle speed.

Pressing the Engine Stop button causes the engine to stop running.

The remote transmitter is powered by three (3) AAA alkaline batteries. If the range of the transmitter has diminished or the transmitter TX LED does not illuminate when a button is pressed, the transmitter batteries should be replaced.
Wireless Control Module (Machines with Single Channel Controller)

NOTE: Machines with a single channel controller can be identified by the external antenna on the control module (Fig. 15).

The wireless control module is a solid state electrical device that receives signal inputs from the remote transmitter and uses those inputs to control machine electrical operation. The control module is attached to the frame next to the battery (Fig. 19).

Inputs from the ignition switch and the remote transmitter are monitored by the control module. Output to the magneto relay, fuel relay, power relay, engine starter motor solenoid, engine throttle control module and nozzle rotation motor are controlled based on the inputs received by the control module.

To start blower operation, rotation of the ignition switch to the START position is used to turn on or "wake up" the control module. The control module Time Out and Power LED’s should both be illuminated during blower operation (Fig. 20).

When a remote transmitter button is pressed, the corresponding control module LED should illuminate and the control module RF activity LED should flicker (Fig. 20).

NOTE: Because of the normal RF activity in the environment, the control module RF activity LED may flicker or be illuminated at any time during machine operation. Machine operation will only be controlled by the remote transmitter that is recognized by the control module.

NOTE: When the engine stop button on the remote transmitter is pressed, there will be a one (1) second delay before the control module engine stop LED illuminates. Also, the control module engine stop LED will remain illuminated and no other remote transmitter operations can be performed for about five (5) seconds.

The control module includes a time-out feature to allow machine operation for a time period after the last control input (e.g. key switch turned off or remote transmitter button pressed). If no inputs are provided to the control module during this time period, the control module will shut off all machine electrical power including turning off the engine, if running. When the engine is turned off with either the key switch or the remote transmitter, the control module Time Out and Power LED’s will both be illuminated for this time period. Refer to your Operator’s Manual for additional details on the time-out feature.

The control module does not connect to an external computer or hand held device, can not be re-programmed and does not record any fault data. The machine wire harness does include a communication port with loopback connector that should remain connected.

Because of the solid state circuitry built into the control module, there is no reliable method to test it. The module may be damaged if an attempt is made to test it with an electrical test device, such as a digital multimeter.

IMPORTANT: Before performing any welding on the machine, disconnect the negative battery cable from the battery and the wire harness connector from the wireless control module to prevent damage to the electrical system.
Wireless Control Module (Machines with Multi Channel Controller)

NOTE: Machines with a multi channel controller can be identified by the lack of an external antenna on the control module (Fig. 21).

The wireless control module is a solid state electrical device that receives signal inputs from the remote transmitter and uses those inputs to control machine electrical operation. The control module is attached to the frame next to the engine.

Inputs from the machine ignition switch and the remote transmitter are monitored by the control module. Output to the fuel relay, start relay, engine starter motor solenoid, engine throttle control module and nozzle rotation relays are controlled based on the inputs received by the control module.

To start blower operation, rotation of the ignition switch to the START position is used to turn on or “wake up” the control module. The control module Health LED should be illuminated green during normal blower operation (Fig. 22). If the Health LED is illuminated either yellow or red, a problem exists with the controller.

When a remote transmitter button is pressed, the control module TX/RX LED should flicker (Fig. 22). The TX/RX LED will be green when the module is receiving a signal from the remote and will be red when the module is transmitting.

NOTE: Because of the normal RF activity in the environment, the control module TX/RX LED may flicker or be illuminated at any time during machine operation. Machine operation will only be controlled by the remote transmitter that is associated to the control module.

The control module includes a power save mode if the module is active for more than 2.5 hours without communication from the remote transmitter. Once in the power save mode, the control module will not communicate with the remote transmitter, will not activate any machine outputs and will not function normally. All machine electrical power will be shut-off including turning off the engine, if running. Refer to your Operator’s Manual for additional details on the power save mode.

The control module does not connect to an external computer or hand held device, can not be re-programmed and does not record any fault data. Because of the solid state circuitry built into the control module, there is no reliable method to test it. The module may be damaged if an attempt is made to test it with an electrical test device, such as a digital multimeter.

IMPORTANT: Before performing any welding on the machine, disconnect the negative battery cable from the battery and the wire harness connector from the wireless control module to prevent damage to the electrical system.
Diode Assembly (Serial Number Below 310000000)

ProForce Debris Blowers with a serial number below 310000000 use a diode assembly in the wire harness (Fig. 23) (see wire harness drawings in Chapter 7 - Electrical Diagrams). The diode allows the initial current flow to energize or "wake up" the remote control module.

Testing

1. Make sure that ignition switch is OFF.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of this chapter). Position disconnected negative cable away from the negative battery terminal.

3. Locate diode assembly and remove cable tie that secures diode to machine wire harness.

4. Unplug the diode from the wire harness for testing.

5. The diode (Fig. 24) can be tested using a digital multimeter (diode test or ohms setting) and the table in the right column.

6. After testing is complete, make sure that diode is fully installed into machine wire harness connector and secured to harness with cable tie.

7. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.

<table>
<thead>
<tr>
<th>Multimeter Red Lead (+) on Terminal</th>
<th>Multimeter Black Lead (-) on Terminal</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>Male</td>
<td>YES</td>
</tr>
<tr>
<td>Male</td>
<td>Female</td>
<td>NO</td>
</tr>
</tbody>
</table>
This page is intentionally blank.
NOTE: See the Kohler Engine Service Manual (included at the end of Chapter 3 - Engine) for engine electrical component repair information.

Nozzle Motor

Figure 25

1. Nozzle
2. Nozzle clamp
3. V belt
4. Housing assembly
5. Flat washer (10 used)
6. Fl-clamp
7. Nozzle motor
8. Motor bracket
9. Cap screw (3 used)
10. Drive pulley
11. Lock nut
12. Cap screw (2 used)
13. Belt guard
14. Flange head screw (2 used)
15. Flat washer
16. Cap screw
17. Flange nut (2 used)
18. Flange nut
19. Leaf spring
20. Bearing
21. Cap screw (2 used)
22. Flange nut (2 used)
23. Shoulder bolt
24. Lock nut
25. Nozzle pulley
26. Nozzle guide

NOTE: If nozzle motor wear or damage occurs, motor replacement is necessary. Individual components for the nozzle motor are not available.
Removal (Fig. 25)

1. Position machine on a firm, level surface. Make sure engine is stopped and remove key from the ignition switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of this chapter). Position disconnected negative cable away from the negative battery terminal.

3. Unplug wire harness connector from nozzle motor.

4. Loosen, but do not fully remove, flange nut that secures drive pulley to nozzle motor shaft. Loosen flange nut at least two turns.

5. Remove two (2) cap screws (item 21) and flange nuts (item 22) that secure leaf spring to motor bracket. Remove leaf spring with bearing and flat washers (item 5) from bracket.

6. Loosen two (2) flange head screws (item 14) and flange nuts that secure belt guard (item 13), route v-belt from behind guard and carefully remove belt from machine.

NOTE: The shaft of the nozzle motor is tapered.

7. Use appropriate puller to loosen drive pulley from nozzle motor.

8. Remove flange nut and drive pulley from nozzle motor shaft.

9. Support nozzle motor to prevent it from falling. Remove three (3) cap screws that secure nozzle motor to bracket. Remove nozzle motor from machine.

Installation (Fig. 25)

1. Position nozzle motor to bracket and secure with three (3) cap screws.

2. Thoroughly clean tapered surfaces of motor shaft and drive pulley.

3. Slide drive pulley onto motor shaft and secure with flange nut.

4. Place v-belt in nozzle pulley, route behind belt guard (item 13) and install belt on motor pulley.

5. With a 3/8 in. drive torque wrench, pivot the motor bracket from **200 to 230 in-lb (23 to 25 N-m)** to set v-belt tension (Fig. 26). **Do not over tension belt.** Hold bracket with the torque wrench and tighten two (2) flange head screws and flange nuts to secure belt adjustment and nozzle motor bracket.

6. Center belt guard around v-belt. Tighten cap screws and flange nuts to secure belt guard to machine.

7. Position leaf spring with bearing and flat washers (item 5) to bracket. Make sure that five (5) washers are placed between spring and bracket at each mounting hole. The bearing on the leaf spring should be centered on the outside of the v-belt. Secure leaf spring to motor bracket with two (2) cap screws (item 21) and flange nuts (item 22).

8. Connect wire harness to nozzle motor.

9. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from **10 to 15 ft-lb (14 to 20 N-m)**. Make sure that battery cover is secured.

Figure 26

1. Drive pulley
2. Leaf spring
3. Flange head screw
4. Torque wrench access

Battery Storage

If the machine will be stored for more than 30 days:

1. Remove the battery from the machine and charge it fully (see Battery Service).
2. Either store battery on a shelf or on the machine.
3. Leave battery cables disconnected if the battery is stored on the machine.
4. Store battery in a cool atmosphere to avoid quick deterioration of the battery charge.
5. To help prevent the battery from freezing, make sure it is fully charged (see Battery Service).

Battery Care

1. Battery electrolyte level must be properly maintained. The top of the battery must be kept clean. If the machine is stored in a location where temperatures are extremely high, the battery will discharge more rapidly than if the machine is stored in a location where temperatures are cool.

2. Check battery condition weekly or after every 50 hours of operation. Keep terminals and entire battery case clean because a dirty battery will discharge slowly.

 A. Clean battery by washing entire case with a solution of baking soda and water. Rinse with clear water.

 B. Coat battery posts and cable connectors with Battery Terminal Protector (Toro Part No. 107-0392) or petroleum jelly to prevent corrosion.

 IMPORTANT: Do not remove battery fill caps while cleaning.

3. Battery cables must be tight on terminals to provide good electrical contact. Tighten nuts that secure battery cables from 10 to 15 ft-lb (14 to 20 N·m).

4. If corrosion occurs at battery terminals, disconnect cables. Always disconnect negative (−) cable first. Clean clamps and terminals separately. Reconnect cables to battery with positive (+) cable first. Coat battery posts and cable connectors with Battery Terminal Protector (Toro Part No. 107-0392) or petroleum jelly to prevent corrosion.

5. Periodically (at least every 50 operating hours) check battery electrolyte level. Check electrolyte level every 30 days if machine is in storage.

6. Maintain battery cell level with distilled water. Do not fill battery cells above the fill line.
Battery Service

The battery is the heart of the electrical system. With regular and proper service, battery life can be extended. Additionally, battery and electrical component failure can be prevented.

CAUTION

When working with batteries, use extreme caution to avoid splashing or spilling electrolyte. Electrolyte can destroy clothing and burn skin and eyes. Always wear safety goggles and a face shield when working with batteries.

Electrolyte Specific Gravity

- Fully charged: 1.265 corrected to 80°F (26.7°C)
- Discharged: less than 1.240

Battery Specifications

- BCI Group Size 28
- 535 CCA at 0°F (-18°C)
- Reserve Capacity of 110 minutes at 80°F (27°C)

Dimensions (including terminal posts)

- Length: 10.3 inches (26.2 cm)
- Width: 6.8 inches (17.3 cm)
- Height: 9.5 inches (24.1 cm)

Battery Removal and Installation (Fig. 27)

1. Make sure that ignition switch is in the OFF position and that none of the LED’s on Remote Control Module are illuminated. Loosen strap and remove battery box cover.

2. Loosen and remove negative cable from battery. After negative cable has been removed, loosen and remove positive cable.

3. Carefully remove battery from machine.

4. Install battery in reverse order making sure to connect and tighten positive cable to battery before connecting negative cable. Tighten nuts that secure battery cables from **10 to 15 ft-lb (14 to 20 N·m)**.

NOTE: Before connecting the negative (ground) cable to the battery, connect a digital multimeter (set to DC Amps) between the negative battery post and the negative (ground) cable connector. The reading should be less than 0.1 amp. If the reading is 0.1 amp or more, the machine’s electrical system should be tested for short circuits or faulty components and repaired.

5. Install battery box cover and secure with strap.

Battery Inspection and Maintenance

1. Check battery case for cracks. Replace battery if cracked or leaking.

2. Check battery terminals for corrosion. If corrosion occurs at terminals, disconnect cables. Always disconnect negative (-) cable first. Clean cable clamps and battery terminals separately. Reconnect cables with positive (+) cable first. Coat battery posts and cable connectors with Battery Terminal Protector (Toro Part No. 107-0392) or petroleum jelly to prevent corrosion.

IMPORTANT: Before cleaning the battery, tape or block vent holes to the filler caps and make sure the caps are on tightly.

3. Check for signs of wetness or leakage on the top of the battery which might indicate a loose or missing filler cap, overcharging, loose terminal post or overfilling. Also, check battery case for dirt and oil. Clean the battery with a solution of baking soda and water, then rinse it with clean water.

4. Check that the cover seal is not broken away. Replace the battery if the seal is broken or leaking.

5. Check the electrolyte level in each cell. If the level is below the tops of the plates in any cell, fill all cells with **distilled water** between the minimum and maximum fill lines. Charge at 15 to 25 amps for 15 minutes to allow sufficient mixing of the electrolyte.
Battery Testing

1. Conduct a hydrometer test of the battery electrolyte.

IMPORTANT: Make sure the area around the cells is clean before opening the battery caps.

A. Measure the specific gravity of each cell with a hydrometer. Draw electrolyte in and out of the hydrometer barrel prior to taking a reading to warm-up the hydrometer. At the same time take the temperature of the cell.

B. Temperature correct each cell reading. For each 10°F (5.5°C) above 80°F (26.7°C) add 0.004 to the specific gravity reading. For each 10°F (5.5°C) below 80°F (26.7°C) subtract 0.004 from the specific gravity reading.

Example: Cell Temperature 100°F
Cell Gravity 1.245
ADD (conversion above) 0.008
Correction to 80°F (26.7°C) 1.253

C. If the difference between the highest and lowest cell specific gravity is 0.050 or greater or the lowest cell specific gravity is less than 1.225, charge the battery. Charge at the recommended rate and time given in Charging or until specific gravity of all cells is 1.225 or greater with the difference in specific gravity between the highest and lowest cell less than 0.050. If these charging conditions can not be met, replace the battery.

2. Perform a high-discharge test with an adjustable load tester.

This is one of the most reliable means of testing a battery as it simulates the cold-cranking test. A commercial battery load tester is required to perform this test.

CAUTION
Follow the battery load tester manufacturer’s instructions when using a battery load tester.

A. Check the voltage across the battery terminals prior to load testing the battery. If the voltage is less than 12.4 VDC, recharge the battery.

B. If the battery has recently been charged, remove the battery surface charge before performing the load test. Disconnect the engine fuel stop solenoid to prevent the engine from starting. Engage the starter motor for 10 seconds to remove battery surface charge. Reconnect the fuel stop solenoid.

C. Make sure battery terminals are free of corrosion.

D. Measure the temperature of the center battery cell.

E. Connect a battery load tester to the battery terminals following the load tester manufacturer’s instructions. Connect a digital multimeter to the battery terminals.

F. Apply a test load of 270 amps (one half the Cranking Performance rating of the battery) for 15 seconds.

G. Take a voltage reading after 15 seconds, then remove the load.

H. Using the table below, determine the minimum voltage for the cell temperature reading:

<table>
<thead>
<tr>
<th>Minimum Voltage</th>
<th>Battery Electrolyte Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>70°F (and up) 21.1°C (and up)</td>
</tr>
<tr>
<td>9.5</td>
<td>60°F 15.6°C</td>
</tr>
<tr>
<td>9.4</td>
<td>50°F 10.0°C</td>
</tr>
<tr>
<td>9.3</td>
<td>40°F 4.4°C</td>
</tr>
<tr>
<td>9.1</td>
<td>30°F -1.1°C</td>
</tr>
<tr>
<td>8.9</td>
<td>20°F -6.7°C</td>
</tr>
<tr>
<td>8.7</td>
<td>10°F -12.2°C</td>
</tr>
<tr>
<td>8.5</td>
<td>0°F -17.8°C</td>
</tr>
</tbody>
</table>

I. If the test voltage is below the minimum, replace the battery. If the test voltage is at or above the minimum, return the battery to service.
Battery Charging

To minimize possible damage to the battery and allow the battery to be fully charged, the slow charging method is presented here. This charging method can be accomplished with a constant current battery charger which is commonly available.

CAUTION

Follow the battery charger manufacturer’s instructions when using a battery charger.

NOTE: Using specific gravity of the battery cells is the most accurate method of determining battery condition.

1. Determine the battery charge level from either its specific gravity or open circuit voltage.

<table>
<thead>
<tr>
<th>Battery Charge Level</th>
<th>Specific Gravity</th>
<th>Open Circuit Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>1.265</td>
<td>12.68</td>
</tr>
<tr>
<td>75%</td>
<td>1.225</td>
<td>12.45</td>
</tr>
<tr>
<td>50%</td>
<td>1.190</td>
<td>12.24</td>
</tr>
<tr>
<td>25%</td>
<td>1.155</td>
<td>12.06</td>
</tr>
<tr>
<td>0%</td>
<td>1.120</td>
<td>11.89</td>
</tr>
</tbody>
</table>

2. Determine the charging time and rate using the battery charger manufacturer’s instructions or the following table:

3. Following the battery charger manufacturer’s instructions, connect the charger cables to the battery. Make sure a good connection is made.

4. Charge the battery following the battery charger manufacturer’s instructions.

5. Occasionally check the temperature of the battery electrolyte. If the temperature exceeds 125°F (51.6°C) or the electrolyte is violently gassing or spewing, the charging rate must be lowered or temporarily stopped.

6. Three hours prior to the end of the charging, measure the specific gravity of a battery cell once per hour. The battery is fully charged when the cells are gassing freely at a low charging rate and there is less than a 0.003 change in specific gravity for three consecutive readings.

CAUTION

Do not charge a frozen battery because it can explode and cause injury. Let the battery warm to 60°F (15.5°C) before connecting to a charger.

Charge the battery in a well-ventilated place to dissipate gases produced from charging. These gases are explosive; keep open flame and electrical spark away from the battery. Do not smoke. Nausea may result if the gases are inhaled. Unplug the charger from the electrical outlet before connecting or disconnecting the charger leads from the battery posts.

3. Following the battery charger manufacturer’s instructions, connect the charger cables to the battery. Make sure a good connection is made.

4. Charge the battery following the battery charger manufacturer’s instructions.

5. Occasionally check the temperature of the battery electrolyte. If the temperature exceeds 125°F (51.6°C) or the electrolyte is violently gassing or spewing, the charging rate must be lowered or temporarily stopped.

6. Three hours prior to the end of the charging, measure the specific gravity of a battery cell once per hour. The battery is fully charged when the cells are gassing freely at a low charging rate and there is less than a 0.003 change in specific gravity for three consecutive readings.
Table of Contents

GENERAL INFORMATION 2
 Operators Manual 2
 Electrical Power 2
SPECIAL TOOLS .. 3
SERVICE AND REPAIRS 4
 Blower Drive Shaft 4
 Rotor Assembly .. 6
 Rotor Shaft (Serial Number Below 313000000) 8
 Rotor Shaft (Serial Number Above 313000000) ... 10
 Nozzle Assembly 12
 Inner Housing Assembly 14
General Information

Operator’s Manual

The Operator’s Manual provides information regarding the operation, general maintenance and maintenance intervals for your ProForce Debris Blower machine. Refer to the Operator’s Manual for additional information when servicing the machine.

Electrical Power

Electrical power to ProForce Debris Blower components is controlled by the Remote Control Module. To make sure that machine operation does not occur unexpectedly, disconnect the negative battery cable from the battery before performing any machine service (see Battery Service in the Service and Repairs section of Chapter 4 – Electrical System).

Reattach the disconnected negative battery cable as the last step in any repair. Secure cable with flange nut. Torque nut from 10 to 15 ft-lb (14 to 20 N-m).
Special Tools

Offset Wrench

The offset wrench is used to properly tighten the nuts that secure the rotor assembly to the rotor shaft. Use with 1/2" torque wrench at right angle to offset wrench handle to ensure that proper torque is applied to nut.

NOTE: Two (2) offset wrenches are required to properly tighten the rotor assembly nuts.

Toro Part Number: **TOR6006**

Figure 1
Blower Drive Shaft

NOTE: The coupling assembly between the blower shaft and drive shaft (item 12) is illustrated in Figure 2. The coupling assembly (item 13) used between the drive shaft (item 12) and engine shaft is composed of the same components (Fig. 3).
Removal (Fig. 2)

1. Position machine on a firm, level surface. Make sure engine is stopped and remove key from the ignition switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Remove top grill to allow access to blower drive shaft (see Guards Removal in the Service and Repairs section of Chapter 6 - Chassis).

4. Remove cap screws, flat washers and lock nuts that secure drive shaft assembly to hubs on engine shaft and blower shaft.

5. Lift drive shaft assembly from machine.

6. Disassemble drive couplings from drive shaft using Figures 2 and 3 as guides. Note differences in coupling flange thickness for assembly purposes.

7. Inspect drive couplings for damage and replace if necessary.

8. If necessary, remove hubs from engine shaft and blower shaft:

 A. Remove cap screw and flat washer that secure hub to shaft.

 NOTE: Hub has a tapered ID and will require a puller to remove it from shaft.

 B. Use appropriate puller to remove hub from shaft.

 C. Remove woodruff key from shaft slot.

Installation (Fig. 2)

1. If hub was removed from engine shaft or blower shaft, thoroughly clean tapers of shaft(s) and hub(s). Fit woodruff key to shaft slot and place hub on shaft. Apply Loctite #242 (or equivalent) to threads of cap screw used to secure hub to shaft. Secure hub to shaft with cap screw and flat washer.

2. Place coupling spacers into rubber coupling.

3. Secure drive couplings to drive shaft with cap screws and lock nuts using Figures 2 and 3 as guides.

4. Position drive shaft assembly to engine shaft and blower shaft.

5. Secure drive shaft assembly to hubs on engine shaft and blower shaft with cap screws, flat washers and lock nuts.

6. Install top grill to machine (see Guards Installation in the Service and Repairs section of Chapter 6 - Chassis).

7. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.
Rotor Assembly

SERIAL NUMBER BELOW 310000000

NOTE: ProForce blowers with a serial number below 310000000 use two (2) nuts to secure rotor assembly to rotor shaft (Fig. 4). Blowers with serial numbers above 310000000 use one (1) nut (Fig. 5).

Removal (Fig. 4)

1. Position machine on a firm, level surface. Make sure engine is stopped and remove key from the ignition switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Remove top grill to allow access to blower assembly (see Guards Removal in the Service and Repairs section of Chapter 6 - Chassis).

4. Remove blower drive shaft from machine (see Blower Drive Shaft Removal in this section).

5. Remove retaining ring (item 2), wave washer(s) (item 3) and front cap (item 4) from shaft.

NOTE: When loosening nuts that secure rotor assembly to rotor shaft, use a 1 1/4" wrench in flats on shaft to prevent the shaft from turning.

IMPORTANT: The nuts used to secure the rotor assembly to the rotor shaft have left hand threads. Loosen these nuts by rotating clockwise.
6. Remove nut(s) that secures rotor assembly:

A. On machines with serial numbers below 310000000 (Fig. 4), remove outer nut from rotor shaft by rotating nut in a clockwise direction. Then, remove inner nut by rotating nut clockwise. Use offset wrench (see Special Tools) to loosen nuts from rotor shaft.

B. On machines with serial numbers above 310000000 (Fig. 5), straighten inner tab washer to allow removal of nut. Remove nut from rotor shaft by rotating nut in a clockwise direction. Remove two (2) tab washers from rotor shaft.

NOTE: Washers (item 12) are used to prevent rotor from contacting rotor housing assembly. Typically, two (2) washers are required.

7. Slide spacer (item 6), rotor assembly and washer(s) (item 12) from shaft. Locate and retrieve woodruff key.

8. Remove rotor assembly from rotor shaft.

NOTE: Component parts for the rotor assembly are not available. If rotor damage exists, replace complete rotor assembly.

Installation (Fig. 4)

1. Position woodruff key in slot in rotor shaft. Slide washer(s) (item 12), rotor assembly and then spacer (item 6) onto shaft. Make sure that rotor does not contact rotor housing. If necessary, add additional washer(s) to allow proper clearance.

IMPORTANT: The nuts used to secure the rotor assembly to the rotor shaft have left hand threads. Tighten these nuts by rotating counter-clockwise.

NOTE: When installing nuts that secures rotor assembly to shaft, use a 1 1/4” wrench in flats on shaft to prevent the shaft from turning.

2. On machines with serial numbers below 310000000 (Fig. 4), secure rotor assembly to rotor shaft as follows:

 A. Clean rotor shaft threads with brake parts cleaner or similar non-oily cleaner and allow to dry. After cleaner dries completely, apply Loctite Primer N (or equivalent) to shaft threads. Allow primer to dry completely.

 B. Apply Loctite #242 (or equivalent) to threads of rotor shaft.

 C. While holding rotor shaft with a 1 1/4” wrench in flats on shaft to prevent the shaft from turning, install inner nut and torque with offset wrench (see Special Tools) from 50 to 60 ft-lb (68 to 81 N-m) to secure rotor assembly on shaft.

3. On machines with serial numbers above 310000000 (Fig. 5), secure rotor assembly to rotor shaft as follows:

 A. Slide inner tab washer (larger OD) and then outer tab washer onto rotor shaft.

 B. While holding rotor shaft with a 1 1/4” wrench in flats on shaft to prevent the shaft from turning, install nut and torque with offset wrench (see Special Tools) from 190 to 210 ft-lb (258 to 284 N-m).

 C. Bend inner tab washer over flat of nut.

4. Install front cap (item 4), wave washer(s) (item 3) and retaining ring (item 2) onto shaft. Up to three (3) wave washers might be necessary to secure front cap.

5. Install blower drive shaft (see Blower Drive Shaft Installation in this section).

6. Install top grill to machine (see Guards Installation in the Service and Repairs section of Chapter 6 – Chassis).

7. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.
NOTE: The rotor shaft and bearings can be serviced without removing inner housing from machine.

NOTE: Several changes were made to the rotor shaft assembly above machine serial number 310000000. Figure 6 shows both the earlier and later illustration for the inner housing assembly used on machines with serial number below 313000000.

NOTE: If inner housing has been replaced by a later housing version, use appropriate illustration and service procedures. Rotor shaft for machines with serial number above 313000000 is described later in this section.

Removal (Fig. 6)

1. Position machine on a firm, level surface. Make sure engine is stopped and remove key from the ignition switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Remove nozzle and nozzle pulley from rear of outer housing (see Nozzle Assembly Removal in this section).
4. Remove top grill to allow access to blower assembly (see Guards Removal in the Service and Repairs section of Chapter 6 – Chassis).

5. Remove blower drive shaft from machine (see Blower Drive Shaft Removal in this section).

6. Remove rotor assembly (see Rotor Assembly Removal in this section).

7. For assembly purposes, use a marker to make a line across the bearing holder (item 2) and inner housing (item 8) to show proper alignment.

8. Remove four (4) cap screws that secure bearing holder to inner housing.

NOTE: On machines with serial numbers below 310000000, bearings are secured with Loctite Product 641 medium strength bearing mount. Heating of the inner housing and bearing holder in the bearing area may be required during disassembly.

9. Slide rotor shaft and bearing holder assembly from inner housing.

10. Remove four (4) flange head screws (item 7) that secure front bearing cap to bearing holder. Remove bearing holder from rotor shaft assembly.

11. Using Figure 6 as a guide, remove bearings, retaining rings and front bearing cap from rotor shaft as necessary.

12. On machines with serial numbers above 310000000, install new O-ring (item 11) into inner housing.

13. Inspect rotor shaft and bearing bores of bearing holder and inner housing for wear or damage. Replace parts as necessary.

Installation (Fig. 6)

1. Install bearings onto rotor shaft:

 A. Install inner retaining rings into shaft grooves if they were removed.

 B. Make sure that front bearing cap (item 6) is placed on rotor shaft between bearing locations.

 C. Install bearings onto shaft by pressing on inner race. Make sure that bearings are seated against inner retaining ring.

 D. If equipped, install outer retaining rings.

IMPORTANT: To prevent the bearings from rotating in the inner housing or bearing holder on machines with serial numbers below 310000000, Loctite Primer N (or equivalent) and Loctite Product 641 (or equivalent) must be used during assembly.

2. On machines with serial numbers below 310000000:

 A. Clean bearing bores of bearing holder and inner housing with brake parts cleaner or similar non-oily cleaner. After cleaner dries completely, apply Loctite Primer N (or equivalent) to bearing bores. Allow Primer to dry completely.

 B. Thoroughly clean OD of bearings on rotor shaft. Apply Loctite Product 641 (or equivalent) to OD of both bearings.

3. Slide bearing holder onto bearing on rotor shaft. Position front bearing cap (item 6 or 9) to bearing holder and secure with four (4) flange head screws (item 7).

4. On machines with serial numbers above 310000000, install new O-ring (item 11) into inner housing.

NOTE: Later production bearing holder (item 2) has a groove that locates onto tab on inner housing (item 8). If equipped, make sure that these items align during assembly.

5. Install rotor shaft assembly into inner housing. Make sure to align marker line made during disassembly and that bearing is fully seated in housing bearing bore. Also, make sure that bearing holder slides fully into inner housing.

6. Install four (4) cap screws to secure bearing holder to inner housing. Tighten screws in three (3) equal steps and in a crossing pattern. Final torque on screws should be from 180 to 200 in-lb (21 to 23 N·m). After tightening screws, make sure that rotor shaft rotates freely.

7. Install rotor assembly (see Rotor Assembly Installation in this section).

8. Install blower drive shaft (see Blower Drive Shaft Installation in this section).

9. Install top grill to machine (see Guards Installation in the Service and Repairs section of Chapter 6 – Chassis).

10. Install nozzle pulley and nozzle to rear of outer housing (see Nozzle Assembly Installation) in this section).

11. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N·m). Make sure that battery cover is secured.
Rotor Shaft (Serial Number Above 313000000)

1. Inner housing
2. Rotor shaft
3. Flange head screw (8 used)
4. Bearing cap
5. End cap
6. Retaining ring (4 used)
7. Bearing (2 used)
8. Rear cap
9. O-ring

NOTE: The rotor shaft and bearings can be serviced without removing inner housing from machine.

NOTE: Rotor shaft for machines with serial number below 313000000 is described earlier in this section. If inner housing has been replaced by a later housing version, use appropriate illustration and service procedures.

Removal (Fig. 6)

1. Position machine on a firm, level surface. Make sure engine is stopped and remove key from the ignition switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 – Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Remove nozzle and nozzle pulley from rear of outer housing (see Nozzle Assembly Removal in this section).

4. Remove top grill to allow access to blower assembly (see Guards Removal in the Service and Repairs section of Chapter 6 – Chassis).

5. Remove blower drive shaft from machine (see Blower Drive Shaft Removal in this section).

6. Remove rotor assembly (see Rotor Assembly Removal in this section).

7. Remove four (4) flange head screws that secure bearing cap (item 4) to inner housing.

8. Carefully slide rotor shaft assembly from inner housing. Note slot in inner housing that locates tab on end cap (item 5) for assembly purposes. Rear cap will remain in inner housing.

9. Using Figure 6 as a guide, remove bearing cap (item 4), end cap (item 5), retaining rings (item 6) and bearings (item 7) from rotor shaft as necessary.

10. Remove and discard O-ring (item 9) from rear cap.

11. If necessary, remove rear cap (item 8) from inner housing.

12. Inspect rotor shaft and bearing bores of bearing cap and rear cap for wear or damage. Replace parts as necessary.
Installation (Fig. 6)

1. If removed, install bearings onto rotor shaft:
 A. Install inner retaining rings into shaft grooves if they were removed.
 B. Install bearings onto shaft by pressing on inner race. Make sure that bearings are seated against inner retaining ring.
 C. Install outer retaining rings to secure bearings onto shaft.

2. If rear cap was removed from inner housing, install rear cap:
 A. Slide rear cap (item 8) into housing.
 B. Apply Loctite #242 (or equivalent) to threads of flange head screws (item 4).
 C. Secure rear cap to inner housing with flange head screws (item 4). Torque screws from 90 to 100 in-lb (10.2 to 11.3 N-m).

3. Install new O-ring (item 9) into inner housing. After O-ring installation, clean O-ring to remove all oil, grease or other material.

4. Position end cap (item 5) between bearings on rotor shaft.

5. Install rotor shaft assembly into inner housing. Align tab on end cap (item 5) and slot in inner housing as rotor shaft assembly is being inserted into inner housing. Make sure that end cap and bearing are fully seated in housing bearing bore. Also, align holes in end cap with threaded holes in inner housing.

6. Install bearing cap (item 4) into inner housing (Fig. 8):
 A. Slide bearing cap (item 4) into inner housing. Make sure that cap is fully installed onto rotor shaft bearing.
 B. Apply Loctite #242 (or equivalent) to threads of flange head screws (item 4).
 C. Secure bearing cap to inner housing with flange head screws (item 7). Torque screws from 90 to 100 in-lb (10.2 to 11.3 N-m).
 D. After tightening screws, make sure that rotor shaft rotates freely.

7. Install rotor assembly (see Rotor Assembly Installation in this section).

8. Install blower drive shaft (see Blower Drive Shaft Installation in this section).

9. Install top grill to machine (see Guards Installation in the Service and Repairs section of Chapter 6 - Chassis).

10. Install nozzle pulley and nozzle to rear of outer housing (see Nozzle Assembly Installation in this section).

11. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.

Figure 8

1. Inner housing
2. Rotor shaft assembly
3. End cap
4. Bearing cap
5. Flange head screw
Nozzle Assembly

NOTE: For service information on the nozzle motor (item 7), refer to the Service and Repairs section of Chapter 4 - Electrical System.

Removal (Fig. 9)

1. Position machine on a firm, level surface. Make sure engine is stopped and remove key from the ignition switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Loosen socket head screw and lock nut that secures ends of nozzle clamp. Remove clamp from nozzle and nozzle pulley.

4. Remove nozzle from outer housing.

5. Remove two (2) cap screws (item 21) and flange nuts (item 22) that secure leaf spring to motor bracket. Remove leaf spring assembly and flat washers (item 5) from bracket. If necessary, remove bearing from leaf spring (Fig. 11).

6. Loosen two (2) flange head screws (item 14) and flange nuts that secure nozzle motor bracket to outer housing (Fig. 10). Rotate bracket and nozzle motor to loosen v-belt.

Blower Assembly
7. Loosen cap screws and flange nuts that secure belt guard (item 13), route v-belt from behind guard and carefully remove belt from machine.

8. If necessary, remove nozzle guides, pulley bearings and nozzle pulley from outer housing using Figures 9 and 12 as guides.

Installation (Fig. 9)

1. If removed, install nozzle pulley, pulley bearings and nozzle guides using Figures 9 and 12 as guides.

2. Place v-belt in nozzle pulley, route behind belt guard (item 13) and install belt on motor pulley.

3. With a 3/8 in. drive torque wrench, pivot the motor bracket from **200 to 230 in-lb (23 to 25 N-m)** to set v-belt tension (Fig. 10). **Do not over tension belt.** Hold bracket with the torque wrench and tighten two (2) flange head screws and flange nuts to secure belt adjustment and nozzle motor bracket.

4. Center belt guard around v-belt. Tighten cap screws and flange nuts to secure belt guard to machine.

5. If bearing was removed from leaf spring (Fig. 11), position bearing to leaf spring and secure with shoulder bolt and lock nut.

NOTE: When installing the leaf spring assembly, the leaf spring bearing mounting loops should be orientated up.

6. Position leaf spring assembly and flat washers (item 5) to bracket. Make sure that five (5) washers are placed between spring and bracket at each mounting hole. The bearing on the leaf spring should be centered on the outside of the v-belt. Secure leaf spring to motor bracket with two (2) cap screws (item 21) and flange nuts (item 22).

7. Fit nozzle and nozzle clamp to pulley. Tighten socket head screw and lock nut to secure nozzle to pulley. Torque fasteners from **45 to 50 in-lb (5.1 to 5.6 N-m)**.

8. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from **10 to 15 ft-lb (14 to 20 N-m)**. Make sure that battery cover is secured.

Figure 10

1. Drive pulley
2. Leaf spring assembly
3. Flange head screw
4. Torque wrench access

Figure 11

1. Leaf spring
2. Lock nut
3. Shoulder bolt
4. Bearing

Figure 12

1. Outer housing
2. Nozzle pulley
3. Cap screw
4. Nozzle guide (4 used)
5. Flange nut
6. Spacer
Inner Housing Assembly

1. Inlet bell
2. Retaining ring
3. Wave washer (up to 3 used)
4. Front cap
5. Nut (LH thread)
6. Spacer
7. Rotor assembly
8. Washer (as needed)
9. Woodruff key
10. Stator vane (24 used)
11. Carriage screw (2 used)
12. Outer housing
13. Flange head screw (24 used)
14. Cap screw (8 used)
15. Flange head screw (8 used)
16. Nozzle pulley
17. Cap screw (2 used per guide)
18. Nozzle guide (4 used)
19. Flange nut (16 used)
20. Fan housing mount (2 used)
21. Carriage screw (2 used)
22. Flange nut (4 used)
23. Inner housing assembly
24. Spacer (2 used per guide)

NOTE: The rotor shaft and bearings can be serviced without removing inner housing (item 23) from machine (see Rotor Shaft in this section). For replacement of the inner housing, stator vanes (item 10) or outer housing (item 12), the following procedure is necessary.

NOTE: ProForce Blowers have used three (3) methods of securing the inner and outer housings. On machines with serial number below 310000000 (Fig. 13), the inner housing is attached directly to the outer housing. On machines with serial number from 310000000 to 313000000, a fin spacer and possibly additional thin spacers exist between the inner housing flanges and the outer housing (Fig. 14). Machines with serial number above 313000000 use four (4) fin mounts with fin spacers and possibly additional thin spacers that are secured between inner housing and outer housing (Fig. 15). Refer to correct illustration when removing and installing inner and outer housings.
Removal (Fig. 13)

1. Position machine on a firm, level surface. Make sure engine is stopped and remove key from the ignition switch. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Remove nozzle and nozzle pulley from rear of outer housing (see Nozzle Assembly Removal in this section).

4. Remove top grill to allow access to blower assembly (see Guards Removal in the Service and Repairs section of Chapter 6 - Chassis).

5. Remove blower drive shaft from machine (see Blower Drive Shaft Removal in this section).

6. Remove rotor assembly (see Rotor Assembly Removal in this section).

7. Remove cap screws and flange nuts that secure outer housing to fan housing mounts (item 20).

8. Lift fan housing assembly from machine and set on workbench with rotor shaft pointing straight up (Fig. 17).

9. Place inner housing on two (2) supports (2” x 4” or equivalent). Then, place 9/16” (14.3 mm) thick support between supports and outer housing (Fig. 16). This process will support fan housing assembly to prevent unexpected shifting of any components during disassembly.

10. Loosen, but do not remove, eight (8) screws (item 15) that secure inner housing to outer housing.

11. Remove flange head screw (item 13) that secures each stator vane (item 10) to outer housing. Carefully tilt vane to free vane lugs from inner housing and remove vane from assembly. Repeat for all twenty four (24) vanes. Inspect each vane to make sure that mounting lugs and screw threads are in good condition. Replace any vane that shows signs of damage or wear.

12. Fully remove screws (item 15) that secure inner housing to outer housing.

CAUTION

To prevent personal injury, make sure that fan housing assembly is properly supported as it is removed from the machine. Assembly weighs approximately 70 pounds (31.8 kg).

8. Lift fan housing assembly from machine and set on workbench with rotor shaft pointing straight up (Fig. 17).

9. Place inner housing on two (2) supports (2” x 4” or equivalent). Then, place 9/16” (14.3 mm) thick support between supports and outer housing (Fig. 16). This process will support fan housing assembly to prevent unexpected shifting of any components during disassembly.

10. Loosen, but do not remove, eight (8) screws (item 15) that secure inner housing to outer housing.

11. Remove flange head screw (item 13) that secures each stator vane (item 10) to outer housing. Carefully tilt vane to free vane lugs from inner housing and remove vane from assembly. Repeat for all twenty four (24) vanes. Inspect each vane to make sure that mounting lugs and screw threads are in good condition. Replace any vane that shows signs of damage or wear.

12. Fully remove screws (item 15) that secure inner housing to outer housing.
13. If equipped (machines with serial numbers above 310000000), locate and retrieve fin mounts, fin spacers and thin spacers from between inner housing and outer housing (Fig. 14 or 15). Note location of these components for assembly purposes.

14. Lift inner housing assembly out of the outer housing.

15. If necessary, disassemble inner housing assembly (see Rotor Shaft in this section).

Installation (Fig. 13)

1. Assemble inner housing if it was disassembled (see Rotor Shaft in this section).

2. Place inner housing assembly with the rotor shaft pointing upwards onto two (2) supports (2” x 4” or equivalent). Carefully lower outer housing around inner housing assembly. Then, place 9/16” (14.3 mm) thick support between supports and outer housing (Fig. 16). This process should allow alignment of mounting holes in inner housing flanges to outer housing.

3. On machines with serial numbers above 310000000, install fin mounts, fin spacers and thin spacers (if equipped) between inner housing and outer housing (Fig. 14 or 15).

NOTE: When assembling inner and outer housings, do not fully tighten any screws until all screws are installed to inner housing flanges and stator vanes. Also, use hand tools rather than air impact tools during assembly.

4. On machines with serial numbers above 313000000 (Fig. 15), apply Loctite #242 (or equivalent) to threads of screws used to secure inner and outer housings.

5. Make sure that holes in inner housing flanges align with outer housing holes. Install and finger tighten eight (8) screws (item 15) into threads of inner housing flanges. Do not fully tighten screws at this time.

6. Install stator vanes to inner and outer housing:

 A. Position a vane between inner and outer housing. Make sure that rounded end of vane is orientated toward rotor shaft (Fig. 17).

 B. Tilt vane and engage vane lugs to inner housing holes. While keeping vane lugs in inner housing holes, rotate vane to align threaded hole of vane with outer housing hole.

 C. Install and finger tighten flange head screw (item 12) into threads of vane. Do not fully tighten screw at this time.

 D. Repeat process for all twenty-four (24) vanes.

7. Tighten fasteners in the following order to secure assembly:

 A. Use nutdriver to hand tighten the eight (8) screws (item 15) that secure inner housing flanges to outer housing. Use a crossing pattern while tightening the screws.

 B. Use nutdriver to hand tighten the flange head screws (item 12) that secure the twenty-four (24) stator vanes to outer housing. Use a crossing pattern while tightening the screws.

 C. Torque flange head screws (item 15) that secure inner housing flanges to outer housing from 90 to 100 in-lb (10.2 to 11.2 N-m). Use a crossing pattern while torquing the screws.

IMPORTANT: DO NOT overtighten screws that secure stator vanes to outer housing. If screws are overtightened, threads in vanes could be damaged.

D. Torque screws (item 12) that secure stator vanes to outer housing from 10 to 20 in-lb (1.2 to 2.2 N-m). Use a crossing pattern while torquing the screws.
8. Position outer housing assembly to machine. Secure outer housing to fan housing mounts with cap screws and flange nuts.

9. Install rotor assembly (see Rotor Assembly Installation in this section).

10. Install blower drive shaft (see Blower Drive Shaft Installation in this section).

11. Install top grill to machine (see Guards Installation in the Service and Repairs section of Chapter 6 - Chassis).

12. Install nozzle pulley and nozzle to rear of outer housing (see Nozzle Assembly Installation in this section).

13. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.
This page is intentionally blank.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>2</td>
</tr>
<tr>
<td>General Information</td>
<td>3</td>
</tr>
<tr>
<td>Operator’s Manual</td>
<td>3</td>
</tr>
<tr>
<td>Securing ProForce Debris Blower to Tow Vehicle</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Power</td>
<td>3</td>
</tr>
<tr>
<td>Service and Repairs</td>
<td>4</td>
</tr>
<tr>
<td>Wheels</td>
<td>4</td>
</tr>
<tr>
<td>Wheel Hubs and Bearings</td>
<td>6</td>
</tr>
<tr>
<td>Guards</td>
<td>10</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tires</td>
<td>20 x 10 - 8, 4 Ply, Tubeless</td>
</tr>
<tr>
<td></td>
<td>14 PSI (96.5 kPa)</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque</td>
<td>70 to 90 ft-lb (95 to 122 N-m)</td>
</tr>
</tbody>
</table>
General Information

Operator’s Manual

The Operator’s Manual provides information regarding the operation, general maintenance and maintenance intervals for your ProForce Debris Blower. Refer to the Operator’s Manual for additional information when servicing the machine.

Securing ProForce Debris Blower to Tow Vehicle

While operating or servicing the ProForce blower, make sure that hitch pin is properly positioned in tow vehicle hitch and blower tongue. Hitch pin should be secured with hairpin clip (Fig. 1).

Figure 1

1. Tow vehicle hitch
2. Hitch pin
3. Hairpin clip

Electrical Power

Electrical power to ProForce Debris Blower components is controlled by the Remote Control Module. To make sure that machine operation does not occur unexpectedly, disconnect the negative battery cable from the battery before performing any machine service (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System).

Reattach the disconnected negative battery cable as the last step in any repair. Secure cable with flange nut. Torque nut from 10 to 15 ft-lb (14 to 20 N-m).
Service and Repairs

Wheels

1. Main frame
2. Engine
3. Wheel hub assembly
4. Wheel and tire assembly
5. Lug nut (4 used per wheel)

Figure 2

70 to 90 ft-lb
(95 to 122 N-m)
Wheel Removal (Fig. 2)

1. Have ProForce Debris Blower attached to tow vehicle and park machines on a level surface. Engage vehicle parking brake, stop engine and remove key from the ignition switch. Make sure that blower engine is off. Chock wheels to prevent movement of either machine.

2. To prevent unexpected blower operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Loosen but do not remove four (4) lug nuts that secure wheel to be removed.

4. Jack or hoist ProForce blower from ground and support raised machine with jack stands (see Operator's Manual and Jacking Instructions in Chapter 1 - Safety).

5. Remove lug nuts and pull wheel from machine wheel hub.

Wheel Installation (Fig. 2)

1. Position wheel to wheel hub on raised machine.

2. Secure wheel to ProForce blower with four (4) lug nuts.

3. Lower machine to ground. Alternately torque lug nuts from 70 to 90 ft-lb (95 to 122 N-m).

4. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from 10 to 15 ft-lb (14 to 20 N-m). Make sure that battery cover is secured.

WARNING

Failure to maintain proper lug nut torque could result in failure or loss of wheel and may result in personal injury.
Wheel Hubs and Bearings

SERIAL NUMBER BELOW 310000000 SHOWN

1. Axle (2 used)
2. Grease seal
3. Bearing cone (2 used per axle)
4. Bearing cup (2 used per axle)
5. Wheel hub
6. Lug screw (4 used per hub)
7. Tab washer
8. Nut retainer
9. Flange nut (3 used per axle)
10. Cotter pin
11. Jam nut
12. Dust cap
13. Carriage screw (3 used per axle)

Figure 3

27 to 33 ft-lb
(37 to 44 N·m)

NOTE: Machines with serial number above 310000000 either use an axle mount that is fastened to the frame (Fig. 4) or have a suspension axle for road ready machines (Fig. 5). Wheel hub and bearing service is the same for all axle types.

Disassembly (Fig. 3)

1. Have ProCore Processor attached to tow vehicle and park machines on a level surface. Engage vehicle parking brake, stop engine and remove key from the ignition switch. Make sure that Processor engine is off. Chock wheels to prevent movement of either machine.
2. To prevent unexpected blower operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 – Electrical System). Position disconnected negative cable away from the negative battery terminal.

3. Jack or hoist blower from ground and support with jack stands (see Operator’s Manual and Jacking Instructions in Chapter 1 – Safety).

4. Remove wheel assembly (see Wheel Removal in this section).

5. Carefully pry dust cap from wheel hub.

6. Straighten cotter pin and remove from axle spindle.

7. Remove nut retainer, jam nut and tab washer that secure wheel hub to spindle. Slide wheel hub with bearings from spindle.

8. Disassemble wheel hub:
 A. Remove grease seal from the wheel hub taking care to not damage the hub bore. Discard seal.
 B. Remove bearing cones from both sides of wheel hub. Clean bearings in solvent. Clean inside of hub.
 C. If necessary, remove bearing cups from hub.
 D. Inspect wheel bearings. Check the bearing cones and bearing cups for wear, pitting or other damage. Replace worn or damaged parts.
 E. If necessary, press lug screws from hub.

9. Inspect axle spindle for wear or damage. Replace axle if necessary. Refer to appropriate axle illustration for fastener torque values.

Assembly (Fig. 3)

1. Thoroughly clean all wheel hub components before assembly.

2. Assemble wheel hub:
 A. If bearing cups were removed from the wheel hub, press inner and outer cups into the hub until they seat against the hub shoulder.
 B. Fill hub approximately 50% full of grease.
 C. Pack both bearing cones with grease. Install greased inner bearing cone into the cup on inboard side of the wheel hub.

 IMPORTANT: The grease seal must be pressed in so it is flush with the end of the hub. The lip of the seal must face the inner bearing.

 D. Lubricate the inside of new grease seal and press it into the wheel hub.

 E. If lug screws were removed from hub, press screws fully into hub. Make sure that lug screw flange is pressed fully to hub surface.

 SERIAL NUMBER ABOVE 310000000 SHOWN

 ![Figure 4 Diagram]

 1. Frame
 2. Carriage screw
 3. Axle
 4. Flange nut
 5. Hub assembly
 6. Lock nut
 7. Carriage screw
 8. Axle mount

 27 to 33 ft-lb (37 to 44 N-m)

 SUSPENSION AXLE SHOWN

 ![Figure 5 Diagram]

 1. Frame
 2. Carriage screw
 3. Axle
 4. Lock nut
 5. Hub assembly

 67 to 83 ft-lb (91 to 112 N-m)
3. Install the wheel hub onto the axle spindle taking care to not damage grease seal in hub.

4. Install greased outer bearing cone, tab washer and jam nut onto spindle shaft.

5. While rotating the wheel hub by hand, torque the jam nut from \textbf{75 to 180 in-lb (8.5 to 20.3 N-m)} to seat bearings. Loosen nut until it is away from tab washer and hub has end play. Finally, while rotating hub, tighten jam nut from \textbf{15 to 20 in-lbs (1.7 to 2.3 N-m)}.

6. Install nut retainer and cotter pin to secure jam nut. Install dust cap to hub.

7. Install wheel assembly (see Wheel Installation in this section).

8. Carefully lower machine to ground. Make sure to properly torque wheel lug nuts from \textbf{70 to 90 ft-lb (95 to 122 N-m)}.

9. Connect negative battery cable to negative battery terminal. Tighten nut that secures battery cable from \textbf{10 to 15 ft-lb (14 to 20 N-m)}. Make sure that battery cover is secured.

\textbf{WARNING}

Failure to maintain proper lug nut torque could result in failure or loss of wheel and may result in personal injury.
This page is intentionally blank.
Guards

Figure 6

1. Cap screw (2 used) 3. Flange nut (2 used) 5. Side grill
2. Washer (2 used) 4. Top grill 6. Flange head screw (2 used)
Removal

1. Park machine on a level surface. Make sure engine is OFF. Chock wheels to prevent machine from moving.

2. To prevent unexpected machine operation, disconnect the negative battery cable from the battery terminal (see Battery Service in the Service and Repairs section of Chapter 4 - Electrical System). Position disconnected negative cable away from the negative battery terminal.

![CAUTION]

The engine may be hot. Allow engine to cool before removing guards from machine.

3. Remove guards from machine as needed using Fig. 6 or 7 as a guide.

NOTE: Machines with serial number above 311000000 use a muffler mount to support the front of the top grill (Fig. 7). Removal of the muffler mount on these machines requires removal of the blower driveshaft or engine.

Installation

1. Install removed guards from machine using Figs. 6 or 7 as a guide.
This page is intentionally blank.
Table of Contents

ELECTRICAL SCHEMATICS
- Model 44538 with Serial Number Below 310000000 3
- Models 44538 and 44539 with Serial Number From 310000000 to 311999999 & Model 44542 (all Serial Numbers) 4
- Models 44538 and 44539 with Serial Number Above 312000000 5

ENGINE ELECTRICAL DIAGRAMS
- Serial Number Below 310000000 6
- Serial Number Above 310000000 7

CIRCUIT DRAWINGS
- Control Module Wake Up 8
- Crank Circuits 9
- Run Circuits .. 10
- Engine Speed Increase Circuits 11
- Nozzle Rotation Circuits 12

WIRE HARNESS DRAWINGS
- Model 44538 with Serial Number Below 310000000 14
- Models 44538 and 44539 with Serial Number From 310000000 to 311999999 & Model 44542 (all Serial Numbers) 16
- Models 44538 and 44539 with Serial Number Above 312000000 18
This page is intentionally blank.
ProForce Debris Blower
Model 44538 with Serial Number
Below 31000000

Electrical Schematic

All ground wires are black.
ProForce Debris Blower
Models 44538 and 44539 with Serial Number
From 310000000 to 311999999
Model 44542 (all Serial Numbers)

Electrical Schematic
All ground wires are black.
All ground wires are black.
Engine Electrical Diagram

Serial Numbers Below 310000000

All ground wires are black.

DLA 2B (pin B) DLA
DLA 2A (pin C) DLA
TX Diag Lamp Driver
GCU Power +12V
RX GROUND
Speed Input Shutdown

DLA 1A (pin A) DLA
DLA 1B (pin D) DLA

NOTE: THE OIL PRESSURE SWITCH IS NORMALLY OPEN AND CLOSES WHEN ENGINE OIL PRESSURE EXISTS

ProForce Debris Blower
Serial Numbers Below 310000000
Engine Electrical Diagram

All ground wires are black.
Engine Electrical Diagram

Serial Numbers Above 310000000

All ground wires are black.

ProForce Debris Blower
Serial Numbers Above 310000000

NOTE: THE OIL PRESSURE SWITCH IS NORMALLY OPEN AND CLOSES WHEN ENGINE OIL PRESSURE EXISTS.
Preliminary Analysis:
- The diagram shows the electrical schematic for a ProForce Debris Blower.
- It includes various control modules, ignition switches, and power sources.
- The schematic highlights the operational circuits for the blower's engine and remote transmitter.

Key Features:
- **Ignition Switch (ON ENGINE)**: Can be set to OFF, RUN, or START.
- **Engine Control**:
 - **Fuel Solenoid Out (Red)**
 - **Fuel Solenoid (Red/White)**
 - **Engine Kill (White)**
- **Oil Pressure Switch (Green)**
- **Throttle Control**
- **Coil Power**
- **Remote Transmitter**
- **Control Module Wake Up**
- **Power Current**, **Control Current**, and **Indicator/Gauge Current**

Additional Notes:
- The drawing uses the electrical schematic from a machine with a serial number below 310000000 to show the operational circuits.
- The remote transmitter buttons are noted to be pressed or not pressed.
- The blower is manufactured by ProForce and is model 44538.

Caution:
- Components such as inline fuses, battery, and inline fuse (110A) are depicted.
- There is a warning about NO BUTTONS PRESSED on the remote transmitter.
- The diagram indicates that the drawing uses an electrical schematic from a machine with a specific serial number.
Control Module

Remote Transmitter

NOTE: THE DRAWING ON THIS PAGE USES THE ELECTRICAL SCHEMATIC FROM A MACHINE WITH A SERIAL NUMBER BELOW 310000000 TO SHOW THE OPERATIONAL CIRCUITS.
Engine Speed Increase Circuits

- Ignition Switch in RUN Position and Engine Running
- Control Module LED’s Illuminated
- Remote Speed Increase Button Being Pressed

NOTE: THE DRAWING ON THIS PAGE USES THE ELECTRICAL SCHEMATIC FROM A MACHINE WITH A SERIAL NUMBER BELOW 310000000 TO SHOW THE OPERATIONAL CIRCUITS.
ProForce Debris Blower
Nozzle Rotation Circuits

Ignition Switch in RUN Position and Engine Running
Control Module LED's Illuminated
Remote Nozzle Rotate Button Pressed

NOTE: THE DRAWING ON THIS PAGE USES THE ELECTRICAL SCHEMATIC FROM A MACHINE WITH A SERIAL NUMBER BELOW 310000000 TO SHOW THE OPERATIONAL CIRCUITS.
This page is intentionally blank.
ProForce Debris Blower
Model 44538 with Serial Number
Below 310000000
Wire Harness Diagram
ProForce Debris Blower
Models 44538 and 44539 with Serial Number
From 310000000 to 311999999
Model 44542 (all Serial Numbers)
Wire Harness Diagram
ProForce Debris Blower
Models 44538 and 44539 with Serial Number
Above 312000000

Wire Harness Diagram