Benefits of Drip on Mint:

- Increased yields
- Reduced water use
- Reduced fertilizer use
- Reduced weed growth
- Reduced cultivation
- Reduced labor use
- Reduced energy use
- Improved resistance to insects and disease
- Ability to rotate to marginal soils
- Improved watershed water quality
 - Less soil erosion
 - Reduced leaching of nitrates to the aquifer

Bob McKellip knows there is always risk in trying out new farming methods, but it didn’t stop him from installing a 38 acre drip irrigation experiment on a new stand of mint earlier this year. Now that the first season and harvest is complete, he is happy with the results and is ready for more. “Drip is really good – it increased the yields and used less water at the same time. I think mint will convert to drip just like onions have.”

This is good news for both the farmers and the Lower Boise Watershed Council. The Council supplied Bob with a 50% cost share on the $1,400 per acre drip system costs because drip systems help farmers improve watershed water quality. But McKellip now knows that in addition to reducing runoff from the farm, the increased yields, reduced expenses and other benefits will allow his investment in drip irrigation to stand on its own in the future.

“If I could install drip on my whole farm, it would open up all kinds of new possibilities.”

McKellip planted mint in the fall of 2011 on 30” centers, and installed Toro’s Aqua-Traxx® premium drip tape (EA7081225) 7” beneath each row. This has resulted in a system net application rate of about 0.09 inches per hour and a five-zone system that requires 3.5 days to apply a week’s worth of water during the peak of the season. He began irrigating in June using layflat submains to feed his drip tape, and media filters to prevent clogging. When harvest was complete, the mint was immediately watered back up without issue. McKellip’s local dealer, Clearwater Supply, helped design the system and provided the components and ongoing installation and operations support.

“In July, a flush of secondary growth was evident which usually doesn’t occur until the second year. It helped contribute to my first year yield success – 133 pounds of mint per acre compared to a furrow field nearby which yielded only 94 pounds per acre. That alone is worth about $585 per acre,” says McKellip. In addition, he cites another $135 per acre savings in water and fertilizer use, plus savings in labor, fuel, equipment usage and insecticide costs. But perhaps most importantly, drip irrigation helped create stronger plants which resist verticillium wilt damage, even on poor soils. And by not corrugating the field annually, McKellip expects less crop impact from the introduction and spread of verticillium wilt. This means stand life – and the significant costs associated with stand re-establishment – might be prolonged beyond 4-5 years, and mint could possibly be grown on poor soils with less water. “Delaying these costs is a huge benefit,” explains McKellip. “By being able to rotate mint to poorer soils, I can increase the percentage of my farm acreage to higher water demand, higher value crops.”

Filtration is critical to any drip irrigation system to prevent clogging and ensure the longevity of the emission device such as drip tape.
McKellip experienced a host of other benefits as well. He found that the drip fields closed in earlier, reduced weed pressure, and that the dry soil surface reduced mold and leaf drop. In addition, the plants weren’t damaged from cleaning furrows with a cultivator since siphon pipes were no longer needed. And since plants are stronger, less insecticide was sprayed, which allowed beneficial insects such as lady bugs to thrive. “The University of Idaho is very interested in this aspect and will be setting up some trials to study it,” says McKellip. He was also able to spoon feed the mint more frequently and uniformly with water and fertilizer. “Mint has a shallow rootzone and doesn’t use all the furrow-irrigated water or the dry nitrogen that is applied four times a year. With drip irrigation, the result is a better crop, no runoff and a cleaner watershed.” McKellip is also saving electricity compared to his sprinkler fields because the filters on his drip field only required 32 psi, while the sprinkler fields need 65-70 psi.

But like anything new, McKellip acknowledges that there was a learning curve with drip irrigation. He found that initially there was more labor, but not during the critical in-season period. He also found that there is a little more management with drip, but only at first. “With an automated drip system, all I do is push a button to irrigate and fertigate. With siphon tubes, someone has to physically go change the water several times a day.” Rodents must also be managed, but “aren’t a deal breaker – they are simply part of the picture.”

As president of the Mint Association, McKellip has been getting lots of calls from interested growers eager to learn from his experience. “I tell them the keys to success are to first, work with a good company to make sure the drip system is well engineered and installed. Second, pick a good field to learn on - don’t cripple yourself from the outset with a challenging field. Third, pay close attention to the agronomics, the fertilizer, and the moisture status. And be sure to install moisture sensors to help you see what’s happening beneath the surface.”

McKellip is excited about the prospects of using drip on additional mint acreage, as well as other crops. “I’d like to try it on more mint, on sod, and maybe even my rotation crops of grain corn, sugar beets, and wheat.” Upon further reflection he mused, “If I could install drip on my whole farm, it would open up all kinds of new possibilities.”

<table>
<thead>
<tr>
<th>Peppermint planted Fall 2011 at Bob McKellip Farms</th>
<th>Drip Irrigation</th>
<th>Furrow Irrigation</th>
<th>Difference</th>
<th>Percent change using drip irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield, lbs mint/acre</td>
<td>133</td>
<td>94</td>
<td>39</td>
<td>41% increase</td>
</tr>
<tr>
<td>Value/ac @ $15/pound</td>
<td>$1,995</td>
<td>$1,410/ac</td>
<td>$585/ac</td>
<td></td>
</tr>
<tr>
<td>Water use/acre</td>
<td>25.6"</td>
<td>54"</td>
<td>28.4"</td>
<td>53% decrease</td>
</tr>
<tr>
<td>Nitrate fertilizer, lb/ac</td>
<td>140</td>
<td>300</td>
<td>160</td>
<td>53% decrease</td>
</tr>
<tr>
<td>Value/ac @ $.85/lb</td>
<td>$119</td>
<td>$255</td>
<td>$136</td>
<td></td>
</tr>
</tbody>
</table>